Development of a formalism of discrete element method to study mechanical response of geological materials and media at different scales

Abstract

A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based discrete element method is proposed in the paper. The approach is based on constructing many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture) of simulated solids. For correct modeling of inelastic deformation and failure of geological materials and media at "high" structural scales (relative to the scale of grains) an implementation of dilatational Nikolaevsky's model of plasticity of rocks within the framework of mathematical formalism of discrete element method is proposed. Perspectives of multiscale modeling of geological materials from grainrelated scale up to macroscopic scale within the same numerical technique (DEM) are discussed

    Similar works