169 research outputs found
Navigating paediatric virology through the COVID‑19 era (Review).
The present review article presents the key messages of the 8th Workshop on Paediatric Virology organised virtually by the Institute of Paediatric Virology based on the island of Euboea in Greece. The major topics covered during the workshop were the following: i) New advances in antiviral agents and vaccines against cytomegalovirus; ii) hantavirus nephropathy in children; iii) human rhinovirus infections in children requiring paediatric intensive care; iv) complications and management of human adenovirus infections; v) challenges of post‑coronavirus disease 2019 (COVID‑19) syndrome in children and adolescents; and vi) foetal magnetic resonance imaging in viral infections involving the central nervous system. The COVID‑19 era requires a more intensive, strategic, global scientific effort in the clinic and in the laboratory, focusing on the diagnosis, management and prevention of viral infections in neonates and children
Is zero underestimation feasible? Extended Vacuum-assisted breast biopsy in solid lesions – a blind study
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Influence of obesity-related risk factors in the aetiology of glioma
BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma
Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer
<p>Abstract</p> <p>Background</p> <p>Molecular and epidemiological evidence demonstrate that altered gene expression and single nucleotide polymorphisms in the apoptotic pathway are linked to many cancers. Yet, few studies emphasize the interaction of variant apoptotic genes and their joint modifying effects on prostate cancer (PCA) outcomes. An exhaustive assessment of all the possible two-, three- and four-way gene-gene interactions is computationally burdensome. This statistical conundrum stems from the prohibitive amount of data needed to account for multiple hypothesis testing.</p> <p>Methods</p> <p>To address this issue, we systematically prioritized and evaluated individual effects and complex interactions among 172 apoptotic SNPs in relation to PCA risk and aggressive disease (i.e., Gleason score ≥ 7 and tumor stages III/IV). Single and joint modifying effects on PCA outcomes among European-American men were analyzed using statistical epistasis networks coupled with multi-factor dimensionality reduction (SEN-guided MDR). The case-control study design included 1,175 incident PCA cases and 1,111 controls from the prostate, lung, colo-rectal, and ovarian (PLCO) cancer screening trial. Moreover, a subset analysis of PCA cases consisted of 688 aggressive and 488 non-aggressive PCA cases. SNP profiles were obtained using the NCI Cancer Genetic Markers of Susceptibility (CGEMS) data portal. Main effects were assessed using logistic regression (LR) models. Prior to modeling interactions, SEN was used to pre-process our genetic data. SEN used network science to reduce our analysis from > 36 million to < 13,000 SNP interactions. Interactions were visualized, evaluated, and validated using entropy-based MDR. All parametric and non-parametric models were adjusted for age, family history of PCA, and multiple hypothesis testing.</p> <p>Results</p> <p>Following LR modeling, eleven and thirteen sequence variants were associated with PCA risk and aggressive disease, respectively. However, none of these markers remained significant after we adjusted for multiple comparisons. Nevertheless, we detected a modest synergistic interaction between <it>AKT3 rs2125230-PRKCQ rs571715 </it>and disease aggressiveness using SEN-guided MDR (p = 0.011).</p> <p>Conclusions</p> <p>In summary, entropy-based SEN-guided MDR facilitated the logical prioritization and evaluation of apoptotic SNPs in relation to aggressive PCA. The suggestive interaction between <it>AKT3-PRKCQ </it>and aggressive PCA requires further validation using independent observational studies.</p
- …