11 research outputs found

    Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP

    Full text link
    Weyl semimetals are materials where electrons behave effectively as a kind of massless relativistic particles known asWeyl fermions. These particles occur in two flavours, or chiralities, and are subject to quantum anomalies, the breaking of a conservation law by quantum fluctuations. For instance, the number of Weyl fermions of each chirality is not independently conserved in parallel electric and magnetic field, a phenomenon known as the chiral anomaly. In addition, an underlying curved spacetime provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, which remains experimentally elusive. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat spacetime, opening the door to experimentally probe such type of anomalies in Weyl semimetals. Using a temperature gradient, we experimentally observe a positive longitudinal magnetothermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields (DT || B) that vanishes in the ultra quantum limit. This observation is consistent with the presence of a mixed axial-gravitational anomaly. Our work provides clear experimental evidence for the existence of a mixed axial-gravitational anomaly of Weyl fermions, an outstanding theoretical concept that has so far eluded experimental detection

    Interaction of 3â-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la203589u.3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol% sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterol’s. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol% cholesterol), the average life-time of trans parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average life-time of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial

    Berry phase and band structure analysis of the Weyl semimetal NbP

    Get PDF
    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase

    Chiral magnetoresistance in the Weyl semimetal NbP

    No full text
    NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications
    corecore