15 research outputs found

    Origin of nanosized diamonds in interstellar space and low-pressure-temperature Earth rocks

    Get PDF
    Nanosized diamond particles in the interstellar space and in the Earth rocks related with water presence. In the paper proposed the model of the nanosized diamond particle formation from oxidized water-carbon dioxide gaseous mixtures

    Metastable Nanosized Diamond Formation from Fluid Systems

    Get PDF
    The model of nanosized diamond particles formation at metastable P-T parameters from fluid is presented. It explains the specific of CVD diamond synthesis gases mixtures and hydrothermal growth of diamond at low P-T parameters as well as it explains the geneses of metamorphic and magmatic nano- and microdiamond in the shallow depth Earth rocks and the genesis of interstellar nanodiamond formations in the space

    Metastable Nanosized Diamond Formation from Fluid Systems

    Full text link

    Origin of nanosized diamonds in interstellar space and low-pressure-temperature Earth rocks

    No full text

    A new pyrope-based mineralogical-petrological method for identifying the diamond potential of kimberlite/lamproite deposits

    No full text
    P-T- Oxygen fugacity (fO2) conditions and fluid compositions were estimated for the formation conditions of pyrope garnet inclusions in diamonds and xenocrysts from diamond-bearing and diamond-free kimberlites using their total chemical analyses and single oxythermobarometry. Our data indicate that optimal conditions for diamond growth and preservation occur in the presumed water-rich mantle fluids containing the lowest abundance of free atomic carbon. The majority of the calculated C-H-O fluid compositions for diamond formation in peridotite xenoliths from high diamond grade kimberlites correspond to a high hydrogen and low carbon and oxygen atomic fluid percents, while those from the majority of peridotite xenoliths in the low grade diamond kimberlites corresponds to the low hydrogen, high carbon and oxygen atomic percent fluids. This new approach defines the conditions of diamond formation for kimberlitic deposits. It better characterizes diamond grades in kimberlites in comparison to the previous empirical mineralogical Ca-Cr methods and can be used as a more precise mineralogical-petrological method for prospecting for kimberlitic diamond deposits

    Comment on "Oestrogen-induced angiogenesis and implantation contribute to the development of parasitic myomas after laparoscopic morcellation"

    No full text
    Abstract Background The cause of contamination and dissemination of leiomyoma tissue particles and cells in the peritoneal cavity during myomectomy is a challenging issue for both clinicians and researchers. Therefore, the article by Huang et al. recently published in your journal is the subject of this letter. Main body We comment on the role of laparoscopic condition in xenograft implantation and also highlighted the shortcomings of this study. The surgical technique of intramural fibroid enucleation, cell spillage during morcellation and postsurgical hormonal impact on the development of parasitic myomas become evident, while the contribution of CO2 insufflation, the fibroid’s nature, mutations and pseudocapsule impacts on angiogenesis are not clear. In addition, an exploration of the exact origin of implanted fragments harvested from the fibroid tissue and their nature might play a significant role in the implantation and the angiogenesis induction ability of xenografts. Conclusion Taking into account the current literature in the scope of this study, we suggest that the factors involved in development of parasitic myomas can be classified as confirmed and doubtful contributions

    4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation

    No full text
    This manuscript deals with the synthesis and computational and experimental evaluation of the antimicrobial activity of twenty-nine 4-(indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines. An evaluation of antibacterial activity against Gram (+) and Gram (−) bacteria revealed that the MIC of indole derivatives is in the range of 0.06–1.88 mg/mL, while among fourteen methylindole derivatives, only six were active, with an MIC in the range of of 0.47–1.88 mg/mL. S. aureus appeared to be the most resistant strain, while S. Typhimurium was the most sensitive. Compound 5x was the most promising, with an MIC in the range of 0.06–0.12 mg/mL, followed by 5d and 5m. An evaluation of these three compounds against resistant strains, namely MRSA P. aeruginosa and E. coli, revealed that they were more potent against MRSA than ampicillin. Furthermore, compounds 5m and 5x were superior inhibitors of biofilm formation, compared to ampicillin and streptomycin, in terms Compounds 5d, 5m, and 5x interact with streptomycin in additive manner. The antifungal activity of some compounds exceeded or was equipotent to those of the reference antifungal agents bifonazole and ketoconazole. The most potent antifungal agent was found to be compound 5g. Drug likeness scores of compounds was in a range of −0.63 to 0.29, which is moderate to good. According to docking studies, E. coli MurB inhibition is probably responsible for the antibacterial activity of compounds, whereas CYP51 inhibition was implicated in antifungal activity. Compounds appeared to be non-toxic, according to the cytotoxicity assessment in MRC-5 cells
    corecore