14 research outputs found

    Assembly of 48S Translation Initiation Complexes from Purified Components with mRNAs That Have Some Base Pairing within Their 5′ Untranslated Regions

    No full text
    The reconstitution of translation initiation complexes from purified components is a reliable approach to determine the complete set of essential canonical initiation factors and auxiliary proteins required for the 40S ribosomal subunit to locate the initiation codon on individual mRNAs. Until now, it has been successful mostly for formation of 48S translation initiation complexes with viral IRES elements. Among cap-dependent mRNAs, only globin mRNAs and transcripts with artificial 5′ leaders were amenable to this assembly. Here, with modified conditions for the reconstitution, 48S complexes have been successfully assembled with the 5′ UTR of beta-actin mRNA (84 nucleotides) and the tripartite leader of adenovirus RNAs (232 nucleotides), though the latter has been able to use only the scanning rather then the shunting model of translation initiation with canonical initiation factors. We show that initiation factor 4B is essential for mRNAs that have even a rather moderate base pairing within their 5′ UTRs (with the cumulative stability of the secondary structure within the entire 5′ UTR < −13 kcal/mol) and not essential for beta-globin mRNA. A recombinant eIF4B poorly substitutes for the native factor. The 5′ UTRs with base-paired G residues reveal a very sharp dependence on the eIF4B concentration to form the 48S complex. The data suggest that even small variations in concentration or activity of eIF4B in mammalian cells may differentially affect the translation of different classes of cap-dependent cellular mRNAs

    A Leaderless mRNA Can Bind to Mammalian 80S Ribosomes and Direct Polypeptide Synthesis in the Absence of Translation Initiation Factors

    No full text
    Translation initiation in eukaryotic cells is known to be a complex multistep process which involves numerous protein factors. Here we demonstrate that leaderless mRNAs with initiator Met-tRNA can bind directly to 80S mammalian ribosomes in the absence of initiation factors and that the complexes thus formed are fully competent for the subsequent steps of polypeptide synthesis. We show that the canonical 48S pathway of eukaryotic translation initiation has no obvious advantage over the 80S pathway of translation initiation on leaderless mRNAs and suggest that, in the presence of competing mRNAs containing a leader, the latter mechanism will be preferred. The direct binding of the leaderless mRNA to the 80S ribosome was precluded when such an mRNA was supplied with a 5′ leader, irrespective of whether it was in a totally single-stranded conformation or was prone to base pairing. The striking similarity between the mechanisms of binding of leaderless mRNAs with mammalian 80S or bacterial 70S ribosomes gives support to the idea that the alternative mode of translation initiation used by leaderless mRNAs represents a relic from early steps in the evolution of the translation apparatus

    A Cross-Kingdom Internal Ribosome Entry Site Reveals a Simplified Mode of Internal Ribosome Entry

    No full text
    Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5′ untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with ∼23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5′-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins

    Scientific program of DERICA — prospective accelerator and storage ring facility for radioactive ion beam research

    No full text
    Studies of radioactive ions (RIs) are the most thriving field of low-energy nuclear physics. In this paper, the concept and the scientific agenda of the prospective accelerator and storage ring facility for RI beam (RIB) research are proposed for a large-scale international project based at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research. The motivation for the new facility is discussed and its characteristics are briefly presented and shown to be comparable to those of advanced world centers, the so-called "RIB factories". In the project, the emphasis is made on studies with short-lived RIBs in storage rings. Aunique feature of the project is the possibility of studying electron-RI interactions in a collider experiment to determine the fundamental properties of nuclear matter, in particular, electromagnetic form factors of exotic nuclei

    Pasolini's Saint Paul

    No full text
    corecore