10 research outputs found

    CRANIOFACIAL STRESS PATTERNS AND DISPLACEMENTS AFTER ACTIVATION OF HYRAX DEVICE: FINITE ELEMENT MODELLING

    Get PDF
    Rapid maxillary expansion is employed for the treatment of cross-bite and deficiency of transversal dimension of the maxilla in patients with and without cleft of palate and lip. For this procedure, generally, different orthodontic appliances and devices generating significant transversal forces are used. The aim of this study is the finite-element analysis of stresses and displacements of the skull without palate cleft and the skull with unilateral and bilateral cleft after activation of the Hyrax orthodontic device. Two different constructions of the orthodontic device Hyrax with different positions of the screw relative palate are considered. In the first case, the screw is in the occlusal horizontal plane, and in the other, the screw is located near the palate. Activation of the orthodontic device corresponds to the rotation of the screw on one-quarter turn. It is established that the screw position significantly affects the distributions of stresses in skull and displacements of the cranium without palate cleft and with unilateral or bilateral palate cleft. Stresses in the bone structures of the craniums without cleft and with cleft are transferred from the maxilla to the pterygoid plate and pharyngeal tubercle if the screw displaces from the occlusal plane to the palate. Depending on the construction of the orthodontic appliance, the maxilla halves in the transversal plane are unfolded or the whole skull is entirely rotated in the sagittal plane. The stresses patterns and displacements of the skull with bilateral palate cleft are almost unchanged after activation of the orthodontic devices with different positions of the screw, only magnitudes of stresses and displacements are changed. The obtained results can be used for design of orthodontic appliances with the Hyrax screw, as well as for planning of osteotomies during the surgical assistance of the rapid maxillary expansion

    Inverse design of anisotropic bone scaffold based on machine learning and regenerative genetic algorithm

    Get PDF
    Introduction: Triply periodic minimal surface (TPMS) is widely used in the design of bone scaffolds due to its structural advantages. However, the current approach to designing bone scaffolds using TPMS structures is limited to a forward process from microstructure to mechanical properties. Developing an inverse bone scaffold design method based on the mechanical properties of bone structures is crucial.Methods: Using the machine learning and genetic algorithm, a new inverse design model was proposed in this research. The anisotropy of bone was matched by changing the number of cells in different directions. The finite element (FE) method was used to calculate the TPMS configuration and generate a back propagation neural network (BPNN) data set. Neural networks were used to establish the relationship between microstructural parameters and the elastic matrix of bone. This relationship was then used with regenerative genetic algorithm (RGA) in inverse design.Results: The accuracy of the BPNN-RGA model was confirmed by comparing the elasticity matrix of the inverse-designed structure with that of the actual bone. The results indicated that the average error was below 3.00% for three mechanical performance parameters as design targets, and approximately 5.00% for six design targets.Discussion: The present study demonstrated the potential of combining machine learning with traditional optimization method to inversely design anisotropic TPMS bone scaffolds with target mechanical properties. The BPNN-RGA model achieves higher design efficiency, compared to traditional optimization methods. The entire design process is easily controlled

    FINITE-ELEMENT MODELLING OF THE TYMPANIC MEMBRANE RETRACTION POCKET UNDER NEGATIVE PRESSURE IN THE TYMPANIC CAVITY

    Get PDF
    The finite-element calculation of the static stress-strain state of the middle ear was made in this paper. The malleus, incus and stapes models were constructed on the basis of tomographic data. The tympanic membrane model was obtained using the equations of elliptic hyperboloids. The tympanic membrane consists of the pars tensa and pars flaccida, which have different thicknesses and elasticity moduli. Absolute deformations of the tympanic membrane were defined at different values of negative pressure in the tympanic cavity. The critical values of elastic modulus for the pars tensa posterosuperior quadrant were found for the point at which the tympanic membrane touches the auditory ossicles. Obtained results can be used to predict the thickness of a cartilaginous graft which is overlaid on the posterosuperior quadrant of the pars tensa in order to eliminate the retraction pocket

    A review on the mechanical metamaterials and their applications in the field of biomedical engineering

    Get PDF
    Metamaterials are a group of materials/structures which possess novel behaviors not existing in nature. The metamaterials include electromagnetic metamaterials, acoustic metamaterials, mechanical metamaterials, etc. among which the mechanical metamaterials are widely used in the field of biomedical engineering. The mechanical metamaterials are the ones that possess special mechanical behaviors, e.g., lightweight, negative Poisson’s ratio, etc. In this paper, the commonly used mechanical metamaterials are reviewed and their applications in the field of biomedical engineering, especially in bone tissue engineering and vascular stent, are discussed. Finally, the future perspectives of this field are given

    FINITE-ELEMENT MODELLING OF THE TYMPANIC MEMBRANE RETRACTION POCKET UNDER NEGATIVE PRESSURE IN THE TYMPANIC CAVITY

    Get PDF
    The finite-element calculation of the static stress-strain state of the middle ear was made in this paper. The malleus, incus and stapes models were constructed on the basis of tomographic data. The tympanic membrane model was obtained using the equations of elliptic hyperboloids. The tympanic membrane consists of the pars tensa and pars flaccida, which have different thicknesses and elasticity moduli. Absolute deformations of the tympanic membrane were defined at different values of negative pressure in the tympanic cavity. The critical values of elastic modulus for the pars tensa posterosuperior quadrant were found for the point at which the tympanic membrane touches the auditory ossicles. Obtained results can be used to predict the thickness of a cartilaginous graft which is overlaid on the posterosuperior quadrant of the pars tensa in order to eliminate the retraction pocket

    Mathematical Model for Analysis of Translational Displacements of Tooth Root

    Get PDF
    Analytical modeling of stress-strain state of a periodontal ligament in the case of the translational displacement of a tooth root was carried out. The tooth root was assumed as a rigid body. The boundary conditions corresponding to the translational displacement of the root and fixed external surface of the periodontal ligament in the dental alveolus were considered. The system of differential equations describing the periodontal ligament’s plane-strain state induced by the translational motion of the tooth were used as the governing equations. An analytical solution was found for the governing equations in the explicit form. Comparative analysis of the concentrated force generated by the prescribed translational motion of the tooth root was performed using the obtained analytical solution and the model of an incompressible periodontal ligament in the form of a circular paraboloid and hyperboloid. The mathematical model developed in this paper can be used to analyze stresses and strains in the periodontal tissue during orthodontic movement

    Deformations at the craniofacial complex depending on the hyrax device design

    No full text
    Finite element analysis of the stress-strain state of a human skull after the expansion of the maxilla with using different designs orthodontic appliance HYRAX was carried out. Finite element model of craniofacial complex and supporting teeth are obtained on the basis of tomographic data. An orthodontic appliance differs by the localization of the screw relative to the palate. The design with location of the rods and screw of device in the same horizontal plane as well as the design with the location of the screw at the 8 mm closer to the palate relative to the horizontal localization are considered. Deformations at the intact skull and a skull with a cleft palate were derived. The regions of the largest deformations of the skull bone structures are defined for different orthodontic device designs. Effect of the orthodontic device design on displacements of the supporting teeth is analyzed. The results can be used to design devices HYRAX for the orthodontic correction and treatment of the cross-bite patients

    Analysis of Fiberglass Winding Angle on Natural Frequency of Free Vibration of Cylindrical Shell with Asymmetric Boundary Conditions

    No full text
    In order to obtain approximate solution of natural frequencies for the free vibration of anisotropic circular cylindrical shells made of GFRP (glass fiber-reinforced plastic) with asymmetric boundary conditions, Love’s theory and energy method are used. Computation results show that the fundamental natural frequency comes from different vibration modes while the winding angle varies, the effect of number of axial half waves is stronger than number of circumferential waves on natural frequency of free vibration of anisotropic circular cylindrical shell. The effect of shell’s geometrical parameters is also investigated on natural frequencies

    Analysis of Fiberglass Winding Angle on Natural Frequency of Free Vibration of Cylindrical Shell with Asymmetric Boundary Conditions

    No full text
    In order to obtain approximate solution of natural frequencies for the free vibration of anisotropic circular cylindrical shells made of GFRP (glass fiber-reinforced plastic) with asymmetric boundary conditions, Love’s theory and energy method are used. Computation results show that the fundamental natural frequency comes from different vibration modes while the winding angle varies, the effect of number of axial half waves is stronger than number of circumferential waves on natural frequency of free vibration of anisotropic circular cylindrical shell. The effect of shell’s geometrical parameters is also investigated on natural frequencies

    A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering

    No full text
    With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered
    corecore