3,440 research outputs found

    Explicit Free Parameterization of the Modified Tetrahedron Equation

    Full text link
    The Modified Tetrahedron Equation (MTE) with affine Weyl quantum variables at N-th root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parameterized in terms of eight free parameters and sixteen discrete phase choices, thus providing a broad starting point for the construction of 3-dimensional integrable lattice models. The Fermat curve points parameterizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail. We also discuss a solution of the MTE in terms of bosonic continuum functions.Comment: 28 pages, 3 figure

    Ansatz of Hans Bethe for a two-dimensional Bose gas

    Full text link
    The method of q-oscillator lattices, proposed recently in [hep-th/0509181], provides the tool for a construction of various integrable models of quantum mechanics in 2+1 dimensional space-time. In contrast to any one dimensional quantum chain, its two dimensional generalizations -- quantum lattices -- admit different geometrical structures. In this paper we consider the q-oscillator model on a special lattice. The model may be interpreted as a two-dimensional Bose gas. The most remarkable feature of the model is that it allows the coordinate Bethe Ansatz: the p-particles' wave function is the sum of plane waves. Consistency conditions is the set of 2p equations for p one-particle wave vectors. These "Bethe Ansatz" equations are the main result of this paper.Comment: LaTex2e, 12 page

    Ground states of Heisenberg evolution operator in discrete three-dimensional space-time and quantum discrete BKP equations

    Full text link
    In this paper we consider three-dimensional quantum q-oscillator field theory without spectral parameters. We construct an essentially big set of eigenstates of evolution with unity eigenvalue of discrete time evolution operator. All these eigenstates belong to a subspace of total Hilbert space where an action of evolution operator can be identified with quantized discrete BKP equations (synonym Miwa equations). The key ingredients of our construction are specific eigenstates of a single three-dimensional R-matrix. These eigenstates are boundary states for hidden three-dimensional structures of U_q(B_n^1) and U_q(D_n^1)$.Comment: 13 page

    Quantum 2+1 evolution model

    Full text link
    A quantum evolution model in 2+1 discrete space - time, connected with 3D fundamental map R, is investigated. Map R is derived as a map providing a zero curvature of a two dimensional lattice system called "the current system". In a special case of the local Weyl algebra for dynamical variables the map appears to be canonical one and it corresponds to known operator-valued R-matrix. The current system is a kind of the linear problem for 2+1 evolution model. A generating function for the integrals of motion for the evolution is derived with a help of the current system. The subject of the paper is rather new, and so the perspectives of further investigations are widely discussed.Comment: LaTeX, 37page

    Diagnostic of electromagnetic conditions in space using cosmic rays

    Get PDF
    The method of spectrographic global survey was used to study the time variations in parameters of cosmic ray (CR) pitch angle anisotropy and their relationship with the variations of some solar wind characteristics under different electromagnetic conditions in interplanetary space. A classification is made of the conditions that are accompanied by the increase in CR anisotropy

    Quantum Geometry of 3-Dimensional Lattices and Tetrahedron Equation

    Full text link
    We study geometric consistency relations between angles of 3-dimensional (3D) circular quadrilateral lattices -- lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable "ultra-local" Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure allowed us to obtain new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation) as well as reproduce all those that were previously known. These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry.Comment: Plenary talk at the XVI International Congress on Mathematical Physics, 3-8 August 2009, Prague, Czech Republi

    An integrable 3D lattice model with positive Boltzmann weights

    Full text link
    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0<q<1 and three continuous field variables. The layer-to-layer transfer matrices of the model form a two-parameter commutative family. This is the first example of a solvable 3D lattice model with non-negative Boltzmann weights.Comment: HyperTex is disabled due to conflicts with some macro

    New series of 3D lattice integrable models

    Full text link
    In this paper we present a new series of 3-dimensional integrable lattice models with NN colors. The case N=2N=2 generalizes the elliptic model of our previous paper. The weight functions of the models satisfy modified tetrahedron equations with NN states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η\eta. Also we briefly discuss symmetry properties of weight functions of the models.Comment: 17 pages, IHEP-93-126, Late

    New solution of vertex type tetrahedron equations

    Full text link
    In this paper we formulate a new N-state spin integrable model on a three-dimensional lattice with spins interacting round each elementary cube of the lattice. This model can be also reformulated as a vertex type model. Weight functions of the model satisfy tetrahedron equations.Comment: 12 pages, LaTeX, IHEP-94-10
    corecore