65 research outputs found

    Generalized Geologic Map for Land-Use Planning: Lewis County, Kentucky

    Get PDF
    This map is not intended to be used for selecting individual sites. Its purpose is to inform land-use planners, government officials, and the public in a general way about geologic bedrock conditions that affect the selection of sites for various purposes. The properties of thick soils may supercede those of the underlying bedrock and should be considered on a site-to-site basis. At any site, it is important to understand the characteristics of both the soils and the underlying rock

    Generalized Geologic Map for Land-Use Planning: Meade County, Kentucky

    Get PDF
    This map is not intended to be used for selecting individual sites. Its purpose is to inform land-use planners, government officials, and the public in a general way about geologic bedrock conditions that affect the selection of sites for various purposes. The properties of thick soils may supercede those of the underlying bedrock and should be considered on a site-to-site basis. At any site, it is important to understand the characteristics of both the soils and the underlying rock

    Available Coal Resoures of the Handshoe 7.5–Minute Quadrangle, Knott County, Kentucky

    Get PDF
    Coal resources available for mining have been estimated for the Handshoe Quadrangle within the Hazard Coal Reserve District of the Eastern Kentucky Coal Field. Twelve coal beds within the quadrangle are potentially mineable and comprise the basis of these resource estimates. Seven of these beds have been commercially developed, but only four have produced more than 1 million tons: the Tiptop, Hazard No. 8, Hazard No. 4, and Upper Elkhorn No. 3. A computerized Geographic Information System was used to calculate estimates of original, mined-out, and remaining resources, restrictions to mining, and available resources

    Available Coal Resources of the Salyersville South 7.5-Minute Quadrangle, Magoffin County, Kentucky

    Get PDF
    Coal resources available for mining have been estimated for the Salyersville South Quadrangle, which is located in the Licking River Coal Reserve District of the Eastern Kentucky Coal Field. Nine coal beds within the quadrangle are potentially mineable and constitute the basis of these resource estimates. Seven of these beds have been commercially developed, but only five have produced more than 1 million tons: from youngest to oldest, the Skyline A, Lower Broas, Lower Peach Orchard, Middle Peach Orchard, and Upper Peach Orchard. A computerized Geographic Information System was used to calculate estimates of original, mined-out, and remaining resources, as well as restrictions to mining and available resources

    Geology of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

    Get PDF
    Coal beds mined in Kentucky often are not laterally continuous in thickness, quality, or roof condition. Regional and local variation is common. Because thickness, quality, and roof conditions are the result of geologic processes that were active when the coal was deposited as a peat swamp, a better understanding of the relationships between geology and major coal resources can aid in identifying geologic trends, which can be extrapolated beyond areas of present mining. The focus of this study is on the Fire Clay (Hazard No. 4) coal, one of the leading producers in the Eastern Kentucky Coal Field with 20 million short tons of annual production. More than 3,800 thickness measurements, highwall and outcrop descriptions, borehole and geophysical-log descriptions, and proximate analyses from 97 localities were used in conjunction with previous palynologic and petrographic studies to investigate the geology of the Fire Clay coal in a 15-quadrangle area of the Eastern Kentucky Coal Field. The Fire Clay coal is commonly separated into two distinct layers or benches by a flint-clay and shale parting called the “jackrock parting” by miners. Maps of coal benches above and below the parting show that the lower bench is limited in extent and variable in thickness. In contrast, the coal above the jackrock parting occurs across most of the study area and is characterized by rectangular patterns of coal thickness. Multiple coal benches resulted from the accumulation of multiple peat deposits, each with different characteristics. The lower bench of the coal was deposited when a peat accumulated above an irregular topographic surface. Because the peat was being deposited at or below the water table, it was often flooded by sediment from lateral sources, resulting in moderate to locally high ash yields. This peat was drowned and then covered by volcanic ash, which formed the flint clay in the jackrock parting. The upper coal bench accumulated above the ash deposit, after irregularities in the topography had been filled. The relatively flat surface allowed the swamps to spread outward and dome upward above the water table in some areas. Doming of the peat resulted in areas of coal with generally low ash yields and sulfur contents. Sharp, angular changes in the upper coal bench are inferred to represent subtle fault influence on upper peat accumulation. The upper peat was buried by a series of river channels, which were bounded by levees, flood plains, and elongate bays. Several of the rivers eroded through the Fire Clay peats, forming cutouts in the coal. These cutouts often follow orientations similar to the angular trends of coal thinning, suggesting a relationship that can be extended beyond the present limits of mining. Also, additional peat swamps accumulated above the levees and flood plains bounding the channels. Along the thinning margins of these deposits, the peats came near or merged with the top of the Fire Clay coal, resulting in local areas of increased coal thickness. Rider coal benches exhibit high to moderate sulfur contents and ash yields, so that although they may increase coal thickness, total coal quality generally decreases where riders combine with the Fire Clay coal

    Available Resources of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

    Get PDF
    Available resources for the Fire Clay coal were calculated for a 15-quadrangle area in the Eastern Kentucky Coal Field. Original coal resources were estimated to be 1.8 billion tons (BT). Coal mined or lost in mining was estimated at 449 million tons (MT), leaving 1.3 BT of remaining Fire Clay resources in the study area. Of the remaining resources, 400 MT is restricted from mining, primarily because the coal is less than 28 in. thick, normally considered too thin to mine underground using present technology. The total coal available for mining in the study area is 911 MT, or 52 percent of the original resource. Of the 911 MT, 14.9 percent is thicker than 42 in., and only 6.1 percent is accessible by surface-mining methods. The largest block of available coal is in the Leatherwood quadrangle, is less than 42 in. thick, and mostly occurs below drainage

    Available Coal Resources of the Booneville 7.5–Minute Quadrangle, Owsley County, Kentucky

    Get PDF
    The Booneville Quadrangle lies within the Southwestern Reserve District of the Eastern Kentucky Coal Field. Six coal beds in the quadrangle have been commercially developed, mainly by surface mining methods, and comprise the basis of this Coal Availability Study. These beds are, in descending stratigraphic order, Copland, Whitesburg, Amburgy, Upper Elkhorn No. 3, Jellico and Manchester. A computerized Geographic Information System (GRASS) was used to calculate estimates of original, mined-out and remaining resources, restrictions to mining and available resources

    Quality of Private Ground-Water Supplies in Kentucky

    Get PDF
    About 3.7 million people live in Kentucky, of which 1.9 million (52 percent) live in urban areas (roughly defined as any community with 2,500 or more people) and 1.8 million (48 percent) live in rural areas (University of Kentucky, 1993). Figure 1 summarizes sources of drinking water for Kentucky residents. About 70 percent of Kentuckians get their daily supply of water from surface-water sources - lakes and streams; about 25 percent get their water from ground-water wells; and about 5 percent get their water from other sources - springs, cisterns, ponds, or hauled water

    Reply

    Get PDF
    corecore