441 research outputs found

    Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling

    Get PDF
    International audienceReliably translating real-world spatial patterns of ecosystems is critical for understanding processes susceptible to reinforce resilience. However, the great majority of studies in spatial ecology use thematic maps to describe habitats and species in a binary scheme. By discretizing the transitional areas and neglecting the gradual replacement across a given space, the thematic approach may suffer from substantial limitations when interpreting patterns created by many continuous variables. Here, local and regional spectral proxies were used to design and spatially map at very fine scale a continuous index dedicated to one of the most complex seascapes, the coral reefscape. Through a groundbreaking merge of bottom-up and top-down approach, we demonstrate that three to seven-habitat continuous indices can be modeled by nine, six, four, and three spectral proxies, respectively, at 0.5 m spatial resolution using hand-and spaceborne measurements. We map the seven-habitat continuous index, spanning major Indo-Pacific coral reef habitats through the far red-green normalized difference ratio over the entire lagoon of a low (Tetiaroa atoll) and a high volcanic (Moorea) island in French Polynesia with 84 and 82% accuracy, respectively. Further examinations of the two resulting spatial models using a customized histoscape (density function of model values distributed on a concentric strip across the reef crest-coastline distance) show that Tetiaroa exhibits a greater variety of coral reef habitats than Moorea. By designing such easy-to-implement, transferrable spectral proxies of coral reef regime, this study initiates a framework for spatial ecologists tackling coral reef biodiversity, responses to stresses, perturbations and shifts. We discuss the limitations and contributions of our findings toward the study of worldwide coral reef resilience following stochastic environmental change

    Beyond Biodiversity: Fish Metagenomes

    Get PDF
    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level

    Rate of biological invasions is lower in coastal marine protected areas

    Get PDF
    Marine biological invasions threaten biodiversity worldwide. Here we explore how Marine Protected areas, by reducing human use of the coast, confer resilience against the introduction of non-indigenous species (NIS), using two very different Pacific islands as case studies for developing and testing mathematical models. We quantified NIS vectors and promoters on Vancouver (Canada) and Moorea (French Polynesia) islands, sampled and barcoded NIS, and tested models at different spatial scales with different types of interaction among vectors and between marine protection and NIS frequency. In our results NIS were negatively correlated with the dimension of the protected areas and the intensity of the protection. Small to medium geographical scale protection seemed to be efficient against NIS introductions. The likely benefit of MPAs was by exclusion of aquaculture, principally in Canada. These results emphasize the importance of marine protected areas for biodiversity conservation, and suggest that small or medium protected zones would confer efficient protection against NIS introduction

    Rapid Oceanic Response to Tropical Cyclone Oli (2010) over the South Pacific

    Get PDF
    International audienceThe effect of Tropical Cyclone Oli (2010) on the ocean is investigated using a variety of measurements. In situ temperature measurements on the cyclone track are available via the Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE) array of probes. This reflects an extreme fluctuation of the temperature some 18 h after the cyclone, lasting only 12 h and exceeding 38C in amplitude. This study interprets this extreme fluctuation in terms of enhanced mixing associated with the time-dependent inertial currents due to the cyclonic winds. The authors show, using Lagrangian simulations, that this rapid event is compatible with the severe length-scale shortening observed in Lagrangian simulations

    Interspecific hybridization in pilot whales and asymmetric genetic introgression in northern Globicephala melas under the scenario of global warming

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0160080, doi: 10.1371/journal.pone.0160080 .Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.LM had a PCTI Grant from the Asturias Regional Government, referenced BP 10-004. MAS was supported by a 2013 FCT Investigator contract through POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education. This study was also supported by a grant from the Principality of Asturias (reference: GRUPIN-2014-093)

    Relationship between migratory behavior and environmental features revealed by genetic structure of Sardina pilchardus populations along the moroccan Atlantic coast

    Get PDF
    We used genetic markers, namely allozymes, to study the genetic structure (stock unit) and the sardine stocks movement along the Moroccan Atlantic coast and its relationship regarding the environmental features, especially upwelling. In this study, we have combined previous results obtained by analyzing eight samples collected during the spawning season (winter 2004) (chlaida et al.2008) and new data obtained by analyzing eight samples gathered during the feeding season (summer 2006).  Therefore, we compiled 765 individuals from an earlier study and the 2006 summer sampling and compared seasons' results. In winter, a substantial heterogeneity (Fst =0.205) is described, with a significant genetic break in the Agadir Bay (latitude 30° 48' N) that cuts the coastal sardine populations in the Moroccan Atlantic into two stocks (north and south). In summer, the genetic structure showing two groups is maintained (Fst= 0.135). Still, the genetic break separating the two stocks arises southward, near Tarfaya (latitude 28°08’10” N), suggesting a spreading out towards the south of the northern stocks. This result seems to be related to the sardine movement along the Moroccan Atlantic coast regarding reproduction needs in winter and for trophic reasons in summer. The species' observed genetic break and seasonal activity along the Moroccan coast are expected to result from the Cape Ghir Hydrological barrier, impermeable in winter and semi-permeable in summer. This barrier comprises currents, gyres, and different mesoscale structures related to upwelling dominating in this zone
    • 

    corecore