2 research outputs found

    A First Evaluation of a Multi-Modal Learning System to Control Surgical Assistant Robots via Action Segmentation

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This paper presents a cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    A Multi-Modal Learning System for On-Line Surgical Action Segmentation

    No full text
    Surgical action recognition and temporal segmentation is a building block needed to provide some degrees of autonomy to surgical robots. In this paper, we present a deep learning model that relies on videos and kinematic data to output in real-time the current action in a surgical procedure. The proposed neural network architecture is composed of two sub-networks: a Spatial-Kinematic Network, which produces high-level features by processing images and kinematic data, and a Temporal Convolutional Network, which filters such features temporally over a sliding window to stabilize their changes over time. Since we are interested in applications to real-time supervisory control of robots, we focus on an efficient and causal implementation, i.e. the prediction at sample k only depends on previous observations. We tested our causal architecture on the publicly available JIGSAWS dataset, outperforming comparable state-of-the-art non-causal algorithms up to 8.6% in the edit score
    corecore