209 research outputs found

    Effect of nuclear quadrupole interactions on the dynamics of two-level systems in glasses

    Full text link
    The standard tunneling model describes quite satisfactorily the thermal properties of amorphous solids at temperatures T<1KT<1K in terms of an ensemble of two-level systems possessing logarithmically uniform distribution over their tunneling amplitudes and uniform distribution over their asymmetry energies. In particular, this distribution explains the observable logarithmic temperature dependence of the dielectric constant. Yet, experiments have shown that at ultralow temperatures T<5mKT<5mK such a temperature behavior breaks down and the dielectric constant becomes temperature independent (plateau effect). In this letter we suggest an explanation of this behavior exploiting the effect of the nuclear quadrupole interaction on tunneling. We show that below a temperature corresponding to the characteristic energy of the nuclear quadrupole interaction the effective tunneling amplitude is reduced by a small overlap factor of the nuclear quadrupole ground states in the left and right potential wells of the tunneling system. It is just this reduction that explains the plateau effect . We predict that the application of a sufficiently large magnetic field B>10TB>10T should restore the logarithmic dependence because of the suppression of the nuclear quadrupole interaction.Comment: To appear in the Physical Review Letter

    On the theory of resonant susceptibility of dielectric glasses in magnetic field

    Full text link
    The anomalous magnetic field dependence of dielectric properties of insulating glasses in the temperature interval 10mK<T<50mK10mK<T<50mK is considered. In this temperature range, the dielectric permittivity is defined by the resonant contribution of tunneling systems. The external magnetic field regulates nuclear spins of tunneling atoms. This regulation suppresses a nuclear quadrupole interaction of these spins with lattice and, thus, affects the dielectric response of tunneling systems. It is demonstrated that in the absence of an external magnetic field the nuclear quadrupole interaction bb results in the correction to the permittivity δχb/T\delta\chi\sim| b| /T in the temperature range of interest. An application of a magnetic field results in a sharp increase of this correction approximately by a factor of two when the Zeeman splitting mm approaches the order of b| b| . Further increase of the magnetic field results in a relatively smooth decrease in the correction until the Zeeman splitting approaches the temperature. This smooth dependence results from tunneling accompanied by a change of the nuclear spin projection. As the magnetic field surpasses the temperature, the correction vanishes. The results obtained in this paper are compared with experiment. A new mechanism of the low temperature nuclear spin-lattice relaxation in glasses is considered.Comment: 9 Pages, 5 Figures, To be submitted to the Physical Review B, please send comment

    Impact of hydrotechnical construction on aquatic ecosystems of the Kiliia branch of the Danube Delta

    Get PDF
    Resumption of shipping in the Bystryi branch in the Ukrainian part of the Danube Delta, one of the largest aquatic-wetland areas of Europe and the world, has made it necessary to control the anthropogenic impact on the neighboring water areas of the Danube Biosphere Reserve. The objective of the study was comparing the compositions and structure of phytoplankton, microphytobenthos, macrophytes, benthic invertebrates and ichthyofauna of the mouth area of the Bystryi branch with such communities of the mouths of the branches Vostochnyi, Tsyhanka and Starostambulskyi, which are situated in the protected zone and characterized by limited anthropogenic activity. We also determined the correspondence of the descriptors of biotic groups to the categories of the ecological status according to the Water Framework Directive of the EU. The studies were performed in the autumn and summer periods in 2020–2021. We recorded 367 species of animals and plants, the richest biodiversity was seen for the biota of the Bystryi branch – 250&nbsp;species, and 180–231 species of hydrobionts were found in the undisturbed mouths. We determined 25.3% of shared species for the water areas, and therefore high values of similarity of the species compositions according to Bray-Curtis (47.5% to 81.5%). We&nbsp;determined no significant differences between the groups of the mouths of the examined branches according to most indicators of taxonomic and ecological structure. As the descriptors of ecological status, we chose assemblage indices of phytoplankton and microphytobenthos, which are based on ratios of biomass of functional groups of algae, and also the Macrophyte Biological Index for Rivers, saprobic index of Zelinka &amp; Marvan and Biological Monitoring Working Party Index of Benthic Invertebrates and Representation of Species of Ichthyfauna according to vulnerability to actions of environmental factors. We determined that the range of descriptors of phytoplankton and microphytobenthos corresponded to the “high” ecological status category, such of macrophytes and benthic invertebrates to “good”, and such of ichthyofauna varied “high” to “good”. In general, all the mouth areas were characterized by “good” ecological status. Similarities of the species composition and the structure of biotic communities of the mouths of the studied branches of the delta indicate the absence of negative impact of the deepwater shipping on adjacent ecosystems, which may be related to the peculiarities of reactions of groups in the water areas with natural stress, as well as local impact of the hydrotechnical construction

    Low temperature breakdown of coherent tunneling in amorphous solids induced by the nuclear quadrupole interaction

    Full text link
    We consider the effect of the internal nuclear quadrupole interaction on quantum tunneling in complex multi-atomic two-level systems. Two distinct regimes of strong and weak interactions are found. The regimes depend on the relationship between a characteristic energy of the nuclear quadrupole interaction λ\lambda_{\ast} and a bare tunneling coupling strength Δ0\Delta_{0}. When Δ0>λ\Delta_{0}>\lambda_{\ast}, the internal interaction is negligible and tunneling remains coherent determined by Δ0\Delta_{0}. When Δ0<λ\Delta_{0}<\lambda_{\ast}, coherent tunneling breaks down and an effective tunneling amplitude decreases by an exponentially small overlap factor η1\eta^{\ast}\ll1 between internal ground states of left and right wells of a tunneling system. This affects thermal and kinetic properties of tunneling systems at low temperatures T<λT<\lambda_{*}. The theory is applied for interpreting the anomalous behavior of the resonant dielectric susceptibility in amorphous solids at low temperatures T5T\leq 5mK where the nuclear quadrupole interaction breaks down coherent tunneling. We suggest the experiments with external magnetic fields to test our predictions and to clarify the internal structure of tunneling systems in amorphous solids.Comment: To appear in the Physical Review

    Genes encoding transcription factors TaDREB5 and TaNFYC-A7 are differentially expressed in leaves of bread wheat in response to drought, dehydration and ABA

    Get PDF
    Two groups of six spring bread wheat varieties with either high or low grain yield under the dry conditions of Central and Northern Kazakhstan were selected for analysis. Experiments were set up with the selected wheat varieties in controlled environments as follows: (1) slowly progressing drought imposed on plants in soil, (2) rapid dehydration of whole plants grown in hydroponics, (3) dehydration of detached leaves, and (4) ABA treatment of whole plants grown in hydroponics. Representatives of two different families of transcription factors (TFs), TaDREB5 and TaNFYC-A7, were found to be linked to yield-under-drought using polymorphic Amplifluor-like SNP marker assays. qRT-PCR revealed differing patterns of expression of these genes in the leaves of plants subjected to the above treatments. Under drought, TaDREB5 was significantly up-regulated in leaves of all high-yielding varieties tested and down-regulated in all low-yielding varieties, and the level of expression was independent of treatment type. In contrast, TaNFYC-A7 expression levels showed different responses in the high- and low-yield groups of wheat varieties. TaNFYC-A7 expression under dehydration (treatments 2 and 3) was higher than under drought (treatment 1) in all high-yielding varieties tested, while in all low-yielding varieties the opposite pattern was observed: the expression levels of this gene under drought were higher than under dehydration. Rapid dehydration of detached leaves and intact wheat plants grown in hydroponics produced similar changes in gene expression. ABA treatment of whole plants caused rapid stomatal closure and a rise in the transcript level of both genes during the first 30 min, which decreased 6 h after treatment. At this time-point, expression of TaNFYC-A7 was again significantly up-regulated compared to untreated controls, while TaDREB5 returned to its initial level of expression. These findings reveal significant differences in the transcriptional regulation of two drought-responsive and ABA-dependent TFs under slowly developing drought and rapid dehydration of wheat plants. The results obtained suggest that correlation between grain yield in dry conditions and TaNFYC-A7 expression levels in the examined wheat varieties is dependent on the length of drought development and/or strength of drought; while in the case of TaDREB5, no such dependence is observed.Lyudmila Zotova, Akhylbek Kurishbayev, Satyvaldy Jatayev, Gulmira Khassanova, Askar Zhubatkanov, Dauren Serikbay, Sergey Sereda, Tatiana Sereda, Vladimir Shvidchenko, Sergiy Lopato, Colin Jenkins, Kathleen Soole, Peter Langridge, and Yuri Shavruko

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells

    First divertor physics studies in Wendelstein 7-X

    Get PDF
    The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m(2), which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW m(-2) limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. The most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen
    corecore