11 research outputs found

    Collateral damage? Small-scale fisheries in the global fight against IUU fishing

    Get PDF
    © 2020 The Authors. Fish and Fisheries published by John Wiley & Sons Ltd Concern over illegal, unreported and unregulated (IUU) fishing has led to a number of policy, trade and surveillance measures. While much attention has been given to the impact of IUU regulation on industrial fleets, recognition of the distinct impacts on small-scale fisheries is conspicuously lacking from the policy and research debate. In this paper, we outline three ways in which the application of IUU discourse and regulation undermines small-scale fisheries. First, the mainstream construction of “illegal,” “unreported” and “unregulated” fishing, and also the categorical use of “IUU” in an all-inclusive sense, disregards the diversity, legitimacy and sustainability of small-scale fisheries practices and their governing systems. Second, we explore how the recent trade-related measures to counter IUU fishing mask and reinforce existing inequalities between different sectors and countries, creating an unfair burden on small-scale fisheries and countries who depend on them. Third, as IUU fishing is increasingly approached as “organized crime,” there is a risk of inappropriately targeting small-scale fisheries, at times violently. Reflecting on these three trends, we propose three strategies by which a more sensitive and ultimately more equitable incorporation of small-scale fisheries can be supported in the global fight against IUU fishing

    An Open-Source Environmental Chamber for Materials-Stability Testing Using an Optical Proxy

    No full text
    This study is motivated by the desire to disseminate a low-cost, high-precision, high-throughput environmental chamber to test materials and devices under elevated humidity, temperature, and light. This paper documents the creation of an open-source tool with a bill of materials as low as US$2,000, and the subsequent evolution of three second-generation tools installed at three different universities spanning thin films, bulk crystals, and thin-film solar-cell devices. We introduce an optical proxy measurement to detect real-time phase changes in materials. We present correlations between this optical proxy and standard X-ray diffraction measurements, describe some edge cases where the proxy measurement fails, and report key learnings from the technology-translation process. By sharing lessons learned, we hope that future open-hardware development and translation efforts can proceed with reduced friction. Throughout the paper, we provide examples of scientific impact, wherein participating laboratories used their environmental chambers to study and improve the stabilities of halide-perovskite materials. All generations of hardware bills of materials, assembly instructions, and operating codes are available in open-source repositories
    corecore