8 research outputs found

    A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences

    No full text
    Here, palaeobotanical and genetic data for common beech (Fagus sylvatica) in Europe are used to evaluate the genetic consequences of long-term survival in refuge areas and postglacial spread. Four large datasets are presented, including over 400 fossil-pollen sites, 80 plant-macrofossil sites, and 450 and 600 modern beech populations for chloroplast and nuclear markers, respectively. The largely complementary palaeobotanical and genetic data indicate that: (i) beech survived the last glacial period in multiple refuge areas; (ii) the central European refugia were separated from the Mediterranean refugia; (iii) the Mediterranean refuges did not contribute to the colonization of central and northern Europe; (iv) some populations expanded considerably during the postglacial period, while others experienced only a limited expansion; (v) the mountain chains were not geographical barriers for beech but rather facilitated its diffusion; and (vi) the modern genetic diversity was shaped over multiple glacial-interglacial cycles. This scenario differs from many recent treatments of tree phylogeography in Europe that largely focus on the last ice age and the postglacial period to interpret genetic structure and argue that the southern peninsulas (Iberian, Italian and Balkan) were the main source areas for trees in central and northern Europ

    New palynological and tephrochronological investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia

    No full text
    In the sediments of both of the investigated lakes, the tephra from the Mercato-Ottaviano eruption (Vesuvius, southern Italy) (ca. 7900 B.P.) could be identified. The palynological investigations show that from ca. 9000-7200 B.P. (8000-6000 cal B.C.) deciduous oak forests predominated, with only a few representatives of Mediterranean vegetation. At the transition to the central European Atlantic Period those forests changed to an open vegetation type, dominated byJuniperus andPhillyrea. At about 5500 B.P. (4400 cal B.C.), theJuniperus-Phillyrea vegetation was replaced byQuercus ilex woodland that still occurs on the island of Mljet today and is considered to be the natural vegetation of the Dalmatian coastland. The associated vegetation of theQ. ilex forests changed several times. At the beginning of theQ. ilex period,Juniperus values were still high, but soon they decreased andErica spread. In more recent times theQ. ilex forests were partially replaced by plantations ofPinus halcpensis. Indicators of human impact are sparse throughout the pollen record. Clear evidence for human influence exists only from ca. 3100 B.P. (1300 cal B.C.) whenJuglans andPinus halepensis were introduced to the area. Later,Olea andSecale cultivation can be suggested and further spreading ofJuniperus indicates use of the land as pasture
    corecore