82 research outputs found

    What hadron collider is required to discover or falsify natural supersymmetry?

    Get PDF
    Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W, Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. However, in models with gaugino mass unification, the wino is sufficiently light that supersymmetry discovery is possible in other channels over the entire natural SUSY parameter space with no worse than 3% fine-tuning. Here, we examine the SUSY reach in more general models with and without gaugino mass unification (specifically, natural generalized mirage mediation), and show that the high energy LHC (HE-LHC), a pp collider with \sqrt{s}=33 TeV, will be able to detect the SUSY signal over the entire allowed mass range. Thus, HE-LHC would either discover or conclusively falsify natural SUSY with better than 3% fine-tuning using a conservative measure that allows for correlations among the model parameters.Comment: 7 pages; 5 png/pdf figures; revised version coincides with published versio

    LHC luminosity and energy upgrades confront natural supersymmetry models

    Full text link
    The electroweak fine-tuning measure Delta(EW) allows for correlated SUSY soft terms as are expected in any ultra-violet complete theory. Requiring no less than 3% electroweak fine-tuning implies upper bounds of about 360~GeV on all higgsinos, while top squarks are lighter than ~3 TeV and gluinos are bounded by ~ 6-9 TeV. We examine the reach for SUSY of the planned high luminosity (HL: 3 ab^{-1} at 14 TeV) and the proposed high energy (HE: 15 ab^{-1} at 27 TeV) upgrades of the LHC via four LHC collider search channels relevant for natural SUSY: 1. gluino pair production followed by gluino decay to third generation (s)quarks, 2. top-squark pair production followed by decay to third generation quarks and light higgsinos, 3. neutral higgsino pair production with QCD jet radiation (resulting in monojet events with soft dileptons), and 4. wino pair production followed by decay to light higgsinos leading to same-sign diboson production. We confront our reach results with upper limits on superpartner masses in four natural SUSY models: natural gravity-mediation via the 1. two- and 2. three-extra-parameter non-universal Higgs models, 3. natural mini-landscape models with generalized mirage mediation and 4. natural anomaly-mediation. We find that while the HL-LHC can probe considerable portions of natural SUSY parameter space in all these models, the HE-LHC will decisively cover the entire natural SUSY parameter space with better than 3% fine-tuning.Comment: 19 pages with 8 .png figure

    What hadron collider is required to discover or falsify natural supersymmetry?

    Get PDF
    Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W, Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. However, in models with gaugino mass unification, the wino is sufficiently light that supersymmetry discovery is possible in other channels over the entire natural SUSY parameter space with no worse than 3% fine-tuning. Here, we examine the SUSY reach in more general models with and without gaugino mass unification (specifically, natural generalized mirage mediation), and show that the high energy LHC (HE-LHC), a pp collider with [?] = 33 TeV, will be able to detect the SUSY signal over the entire allowed mass range. Thus, HE-LHC would either discover or conclusively falsify natural SUSY with better than 3% fine-tuning using a conservative measure that allows for correlations among the model parameters

    Effects of Neonatal Nutrition Interventions on Neonatal Mortality and Child Health and Development Outcomes: A Systematic Review

    Get PDF
    Background The last two decades have seen a significant decrease in mortality for children \u3c 5 years of age in low and middle‐income countries (LMICs); however, neonatal (age, 0–28 days) mortality has not decreased at the same rate. We assessed three neonatal nutritional interventions that have the potential of reducing morbidity and mortality during infancy in LMICs. Objectives To determine the efficacy and effectiveness of synthetic vitamin A, dextrose oral gel, and probiotic supplementation during the neonatal period. Search Methods We conducted electronic searches for relevant studies on the following databases: PubMed, CINAHL, LILACS, SCOPUS, and CENTRAL, Cochrane Central Register for Controlled Trials, up to November 27, 2019. Selection Criteria We aimed to include randomized and quasi‐experimental studies. The target population was neonates in LMICs. The interventions included synthetic vitamin A supplementation, oral dextrose gel supplementation, and probiotic supplementation during the neonatal period. We included studies from the community and hospital settings irrespective of the gestational age or birth weight of the neonate. Data Collection and Analysis Two authors screened the titles and extracted the data from selected studies. The risk of bias (ROB) in the included studies was assessed according to the Cochrane Handbook of Systematic Reviews. The primary outcome was all‐cause mortality. The secondary outcomes were neonatal sepsis, necrotizing enterocolitis (NEC), prevention and treatment of neonatal hypoglycaemia, adverse events, and neurodevelopmental outcomes. Data were meta‐analyzed by random effect models to obtain relative risk (RR) and 95% confidence interval (CI) for dichotomous outcomes and mean difference with 95% CI for continuous outcomes. The overall rating of evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Main Results Sixteen randomized studies (total participants 169,366) assessed the effect of vitamin A supplementation during the neonatal period. All studies were conducted in low‐ and middle‐income (LMIC) countries. Thirteen studies were conducted in the community setting and three studies were conducted in the hospital setting, specifically in neonatal intensive care units. Studies were conducted in 10 different countries including India (four studies), Guinea‐Bissau (three studies), Bangladesh (two studies), and one study each in China, Ghana, Indonesia, Nepal, Pakistan, Tanzania, and Zimbabwe. The overall ROB was low in most of the included studies for neonatal vitamin A supplementation. The pooled results from the community based randomized studies showed that there was no significant difference in all‐cause mortality in the vitamin A (intervention) group compared to controls at 1 month (RR, 0.99; 95% CI, 0.90–1.08; six studies with 126,548 participants, statistical heterogeneity I2 0%, funnel plot symmetrical, grade rating high), 6 months (RR, 0.98; 95% CI, 0.89–1.07; 12 studies with 154,940 participants, statistical heterogeneity I2 43%, funnel plot symmetrical, GRADE quality high) and 12 months of age (RR, 1.04; 95% CI, 0.94–1.14; eight studies with 118,376 participants, statistical heterogeneity I2 46%, funnel plot symmetrical, GRADE quality high). Neonatal vitamin A supplementation increased the incidence of bulging fontanelle by 53% compared to control (RR, 1.53; 95% CI, 1.12–2.09; six studies with 100,256 participants, statistical heterogeneity I2 65%, funnel plot symmetrical, GRADE quality high). We did not identify any experimental study that addressed the use of dextrose gel for the prevention and/or treatment of neonatal hypoglycaemia in LMIC. Thirty‐three studies assessed the effect of probiotic supplementation during the neonatal period (total participants 11,595; probiotics: 5854 and controls: 5741). All of the included studies were conducted in LMIC and were randomized. Most of the studies were done in the hospital setting and included participants who were preterm (born \u3c 37 weeks gestation) and/or low birth weight (\u3c 2500 g birth weight). Studies were conducted in 13 different countries with 10 studies conducted in India, six studies in Turkey, three studies each in China and Iran, two each in Mexico and South Africa, and one each in Bangladesh, Brazil, Colombia, Indonesia, Nepal, Pakistan, and Thailand. Three studies were at high ROB due to lack of appropriate randomization sequence or allocation concealment. Combined data from 25 studies showed that probiotic supplementation reduced all‐cause mortality by 20% compared to controls (RR, 0.80; 95% CI, 0.66–0.96; total number of participants 10,998, number needed to treat 100, statistical heterogeneity I2 0%, funnel plot symmetrical, GRADE quality high). Twenty‐nine studies reported the effect of probiotics on the incidence of NEC, and the combined results showed a relative reduction of 54% in the intervention group compared to controls (RR, 0.46; 95% CI, 0.35–0.59; total number of participants 5574, number needed to treat 17, statistical heterogeneity I2 24%, funnel plot symmetrical, GRADE quality high). Twenty‐one studies assessed the effect of probiotic supplementation during the neonatal period on neonatal sepsis, and the combined results showed a relative reduction of 22% in the intervention group compared to controls (RR, 0.78; 95% CI, 0.70–0.86; total number of participants 9105, number needed to treat 14, statistical heterogeneity I2 23%, funnel plot symmetrical, GRADE quality high). Authors\u27 Conclusions Vitamin A supplementation during the neonatal period does not reduce all‐cause neonatal or infant mortality in LMICs in the community setting. However, neonatal vitamin A supplementation increases the risk of Bulging Fontanelle. No experimental or quasi‐experimental studies were available from LMICs to assess the effect of dextrose gel supplementation for the prevention or treatment of neonatal hypoglycaemia. Probiotic supplementation during the neonatal period seems to reduce all‐cause mortality, NEC, and sepsis in babies born with low birth weight and/or preterm in the hospital setting. There was clinical heterogeneity in the use of probiotics, and we could not recommend any single strain of probiotics for wider use based on these results. There was a lack of studies on probiotic supplementation in the community setting. More research is needed to assess the effect of probiotics administered to neonates in‐home/community setting in LMICs

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics
    corecore