538 research outputs found

    Developmental potential of trunk neural crest cells in the mouse

    Get PDF
    The availability of naturally occurring and engineered mutations in mice which affect the neural crest makes the mouse embryo an important experimental system for studying neural crest cell differentiation. Here, we determine the normal developmental potential of neural crest cells by performing in situ cell lineage analysis in the mouse by microinjecting lysinated rhodamine dextran (LRD) into individual dorsal neural tube cells in the trunk. Labeled progeny derived from single cells were found in the neural tube, dorsal root ganglia, sympathoadrenal derivatives, presumptive Schwann cells and/or pigment cells. Most embryos contained labeled cells both in the neural tube and at least one neural crest derivative, and numerous clones contributed to multiple neural crest derivatives. The time of injection influenced the derivatives populated by the labeled cells. Injections at early stages of migration yielded labeled progeny in both dorsal and ventral neural crest derivatives, whereas those performed at later stages had labeled cells only in more dorsal neural crest derivatives, such as dorsal root ganglion and presumptive pigment cells. The results suggest that in the mouse embryo: (1) there is a common precursor for neural crest and neural tube cells; (2) some neural crest cells are multipotent; and (3) the timing of emigration influences the range of possible neural crest derivatives

    Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling

    Get PDF
    Analysis of neural crest cell migration in the mouse has been difficult due to the lack of reliable cell markers. Recently, we found that injection of DiI into the chick neural tube marks premigratory neural crest cells whose endfeet are in contact with the lumen of the neural tube (Serbedzija et al. Development 106, 809–819 (1989)). In the present study, this technique was applied to study neural crest cell migratory pathways in the trunk of the mouse embryo. Embryos were removed from the mother between the 8th and the 10th days of development and DiI was injected into the lumen of the neural tube. The embryos were then cultured for 12 to 24 h, and analyzed at the level of the forelimb. We observed two predominant pathways of neural crest cell migration: (1) a ventral pathway through the rostral portion of the somite and (2) a dorsolateral pathway between the dermamyotome and the epidermis. Neural crest cells were observed along the dorsolateral pathway throughout the period of migration. The distribution of labelled cells along the ventral pathway suggested that there were two overlapping phases of migration. An early ventrolateral phase began before E9 and ended by E9.5; this pathway consisted of a stream of cells within the rostral sclerotome, adjacent to the dermamyotome, that extended ventrally to the region of the sympathetic ganglia and the dorsal aorta

    A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration

    Get PDF
    To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway

    Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos

    Get PDF
    We have used the vital dye, DiI, to analyze the contribution of sacral neural crest cells to the enteric nervous system in chick and mouse embryos. In order to label premigratory sacral neural crest cells selectively, DiI was injected into the lumen of the neural tube at the level of the hindlimb. In chick embryos, DiI injections made prior to stage 19 resulted in labelled cells in the gut, which had emerged from the neural tube adjacent to somites 29–37. In mouse embryos, neural crest cells emigrated from the sacral neural tube between E9 and E9.5. In both chick and mouse embryos, DiI-labelled cells were observed in the rostral half of the somitic sclerotome, around the dorsal aorta, in the mesentery surrounding the gut, as well as within the epithelium of the gut. Mouse embryos, however, contained consistently fewer labelled cells than chick embryos. DiI-labelled cells first were observed in the rostral and dorsal portion of the gut. Paralleling the maturation of the embryo, there was a rostral-to-caudal sequence in which neural crest cells populated the gut at the sacral level. In addition, neural crest cells appeared within the gut in a dorsal-to-ventral sequence, suggesting that the cells entered the gut dorsally and moved progressively ventrally. The present results resolve a long-standing discrepancy in the literature by demonstrating that sacral neural crest cells in both the chick and mouse contribute to the enteric nervous system in the postumbilical gut

    Impact of Chronic Sleep Disturbance for People Living With T1 Diabetes.

    Get PDF
    AIM: The aim was to explore personal experiences and to determine the impact of impaired sleep on well-being and diabetes-related activities/decision making among a cohort of people living with T1D. METHOD: Adults with T1D over the age of 18 and parents/carers of children with T1D were invited to complete an online questionnaire about their quality and quantity of sleep. Questions included impact of sleep on diabetes-related decision making, effective calculation of bolus doses, important aspects of psychosocial functioning, and frequency of waking. Diasend download data were used to objectively determine frequency of nocturnal blood glucose testing in children. RESULTS: A total of 258 parent/carer participants (n = 221 female, 85.6%) and 192 adults with T1D (n = 145, 75.5% female, age range 19 to 89 years) took part. In all, 239 parents/carers and 160 adults believed waking in the night has an impact on their usual daily functioning. Of these, 236 parents/carers and 151 (64%) adults reported the impact as negative. Chronic sleep interruption was associated with detrimental impact on mood, work, family relationships, ability to exercise regularly, ability to eat healthily, and happiness. CONCLUSION: Chronic sleep interruption is highly prevalent in adults with T1D and parents/carers of children with T1D with negative effects on daily functioning and well-being. Appropriate interventions are required to alleviate this burden of T1D, address modifiable risk factors for nocturnal hypoglycemia, and reduce the (perceived) need for nocturnal waking

    Genetic steps to organ laterality in zebrafish.

    Get PDF
    All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals

    Multidisciplinary approaches to understanding collective cell migration in developmental biology

    Get PDF
    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology provides a particularly fruitful application area for the development and application of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. By doing so, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review article we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions, and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesised mechanisms through the next generation of experimental data and generalised theoretical descriptions

    Konsumenters kommunikationspreferenser vid risksituation

    Get PDF
    En sammanfattning av uppsatsen på maximalt 8000 tecken
    corecore