2,293 research outputs found

    Optimal control for halo orbit missions

    Get PDF
    This paper addresses the computation of the required trajectory correction maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle. By combiningdynamical systems theory with optimal control techniques, we produce a portrait of the complex landscape of the trajectory design space. This approach enables parametric studies not available to mission designers a few years ago, such as how the magnitude of the errors and the timingof the first TCM affect the correction ΔV. The impetus for combiningdynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery mission being developed for NASA by the Jet Propulsion Laboratory

    Strong coupling from the Hubbard model

    Full text link
    It was recently observed that the one dimensional half-filled Hubbard model reproduces the known part of the perturbative spectrum of planar N=4 super Yang-Mills in the SU(2) sector. Assuming that this identification is valid beyond perturbation theory, we investigate the behavior of this spectrum as the 't Hooft parameter \lambda becomes large. We show that the full dimension \Delta of the Konishi superpartner is the solution of a sixth order polynomial while \Delta for a bare dimension 5 operator is the solution of a cubic. In both cases the equations can be solved easily as a series expansion for both small and large \lambda and the equations can be inverted to express \lambda as an explicit function of \Delta. We then consider more general operators and show how \Delta depends on \lambda in the strong coupling limit. We are also able to distinguish those states in the Hubbard model which correspond to the gauge invariant operators for all values of \lambda. Finally, we compare our results with known results for strings on AdS_5\times S^5, where we find agreement for a range of R-charges.Comment: 14 pages; v2: 17 pages, 2 figures, appendix and references added; typos fixed, minor changes; v3 fixed figures; v4 more references added, minor correctio

    Trends and perspectives of the Romanian regional passenger transport

    Get PDF
    Today, passenger transport has become an indispensable life element, because it offers to the society members many travel possibilities. Modern civilisation, characterised by a massive trade of material and spiritual values, claims a continuous movement of goods and people from a place to another. Transport services are strongly influenced by the transition to the market economy, Romania’s geographical position and also by the life standard. The purpose of this paper is to realize a statistical analysis of the main indicators concerning passenger transport for the southern part of Romania, respectively for the historical provinces Muntenia (excluding Bucharest Municipality) and Oltenia

    Open Spin Chains in Super Yang-Mills at Higher Loops: Some Potential Problems with Integrability

    Full text link
    The super Yang-Mills duals of open strings attached to maximal giant gravitons are studied in perturbation theory. It is shown that non-BPS baryonic excitations of the gauge theory can be studied within the paradigm of open quantum spin chains even beyond the leading order in perturbation theory. The open spin chain describing the two loop mixing of non-BPS giant gravitons charged under an su(2) of the so(6) R symmetry group is explicitly constructed. It is also shown that although the corresponding open spin chain is integrable at the one loop order, there is a potential breakdown of integrability at two and higher loops. The study of integrability is performed using coordinate Bethe ansatz techniques.Comment: 28 pages. References added in revised versio

    Some Properties of the Calogero-Sutherland Model with Reflections

    Full text link
    We prove that the Calogero-Sutherland Model with reflections (the BC_N model) possesses a property of duality relating the eigenfunctions of two Hamiltonians with different coupling constants. We obtain a generating function for their polynomial eigenfunctions, the generalized Jacobi polynomials. The symmetry of the wave-functions for certain particular cases (associated to the root systems of the classical Lie groups B_N, C_N and D_N) is also discussed.Comment: 16 pages, harvmac.te

    Crossover from weak to strong coupling regime in dispersive circuit QED

    Full text link
    We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.Comment: Published versio

    Classical Exchange Algebra of the Superstring on S^5 with the AdS-time

    Full text link
    A classical exchange algebra of the superstring on S^5 with the AdS-time is shown on the light-like plane. To this end we use the geometrical method of which consistency is guaranteed by the classical Yang-Baxter equation. The Dirac method does not work, there being constraints which contain first-class and second-class and one can disentangle with each other keeping the isometry hardly.Comment: 12 pages, v2: argument on alternative representation of S^5 spherical functions added, typos corrected, one reference added, matches journal versio

    Phase-space theory for dispersive detectors of superconducting qubits

    Full text link
    Motivated by recent experiments, we study the dynamics of a qubit quadratically coupled to its detector, a damped harmonic oscillator. We use a complex-environment approach, explicitly describing the dynamics of the qubit and the oscillator by means of their full Floquet state master equations in phase-space. We investigate the backaction of the environment on the measured qubit and explore several measurement protocols, which include a long-term full read-out cycle as well as schemes based on short time transfer of information between qubit and oscillator. We also show that the pointer becomes measurable before all information in the qubit has been lost.Comment: 15 pages, 8 figure

    The Holographic Dual of 2+1 Dimensional QFTs with N=1 SUSY and Massive Fundamental Flavours

    Full text link
    The Maldacena Nastase solution is generalised to include massive fundamental matter through the addition of a flavour profile. This gives a holographic dual to N=1 SYM-CS with massive fundamental matter with a singularity free IR. We study this solution in some detail confirming confinement and asymptotic freedom. A recently proposed solution generating technique is then applied which results in a new type-IIA supergravity solution. In a certain limit the geometry of this solution is asymptotically AdS_4X Y, where Y is the metric at the base of the Bryant-Salamon G_2 cone, which has topology S^3XS^3.Comment: 31 pages plus appendices, 6 figures. v3: Typos corrected, version to appear in JHE
    • 

    corecore