Abstract

It was recently observed that the one dimensional half-filled Hubbard model reproduces the known part of the perturbative spectrum of planar N=4 super Yang-Mills in the SU(2) sector. Assuming that this identification is valid beyond perturbation theory, we investigate the behavior of this spectrum as the 't Hooft parameter \lambda becomes large. We show that the full dimension \Delta of the Konishi superpartner is the solution of a sixth order polynomial while \Delta for a bare dimension 5 operator is the solution of a cubic. In both cases the equations can be solved easily as a series expansion for both small and large \lambda and the equations can be inverted to express \lambda as an explicit function of \Delta. We then consider more general operators and show how \Delta depends on \lambda in the strong coupling limit. We are also able to distinguish those states in the Hubbard model which correspond to the gauge invariant operators for all values of \lambda. Finally, we compare our results with known results for strings on AdS_5\times S^5, where we find agreement for a range of R-charges.Comment: 14 pages; v2: 17 pages, 2 figures, appendix and references added; typos fixed, minor changes; v3 fixed figures; v4 more references added, minor correctio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019