5 research outputs found

    Thymol-functionalized hyaluronic acid as promising preservative biomaterial for the Inhibition of Candida albicans biofilm formation

    Get PDF
    Hyaluronic acid (HA) is a naturally occurring biopolymer that has been employed for a plethora of medicinal applications. Nevertheless, as HA is a natural polysaccharide, it can be a substrate able to promote microbial growth and proliferation. Biopolymer–drug conjugates have gained attention over the years to overcome drawbacks of each single component. Within this context, thymol (Thy), a phenolic compound occurring in essential oils (EOs) extracted from Thymus and Origanum, has been largely studied for its antimycotic applications. However, it is characterized by a low water solubility and moderate cytotoxicity. Herein, we report an innovative HA–thymol conjugate (HA-Thy) biomaterial to circumvent the drawbacks of free thymol use by providing the polymer conjugate with the beneficial properties of both components. Preliminary biological tests evidenced the decrease of thymol cytotoxicity for the HA-Thy conjugate, paired with a promising antibiofilm formation activity against Candida albicans, similar to pure thymol, highlighting its potential application as a preservative biomaterial in formulations

    Age-related changes in B cells relevant to vaccine responses

    No full text
    Older people have reduced immune responses to infection and vaccination. B cell activation is key for the efficacy of the vaccine response, but there are several age-related changes in B cells which may contribute to the loss of vaccine efficacy. Different subpopulations of B cells contain have different functions and phenotypes. These populations can change as we age; older people have been shown to have fewer “IgM memory” cells, regulatory B cells and plasma cells and more IgD-CD27- “double negative” and “Age-related B cells”. While the overall quantity of antibody in the blood does not change, the quality of the B cell response changes; producing less specific antibodies upon challenge and more autoreactive antibodies. This could be due to changes in selection pressures, as has been demonstrated by repertoire sequencing of different subsets of B cells at different ages. Other changes in antibody repertoire are seen, including: greater levels of IgG2 in older people, and altered IgG1 IGHV gene usage. Since B cells rely on their environment for efficient responses, some of these changes may be due to age-related changes in accessory cells/signals. Other changes appear to be intrinsic to older/aged B cells themselves, such as their tendency to produce greater levels of inflammatory cytokines

    Thymol-Functionalized Hyaluronic Acid as Promising Preservative Biomaterial for the Inhibition of <i>Candida albicans</i> Biofilm Formation

    No full text
    Hyaluronic acid (HA) is a naturally occurring biopolymer that has been employed for a plethora of medicinal applications. Nevertheless, as HA is a natural polysaccharide, it can be a substrate able to promote microbial growth and proliferation. Biopolymer–drug conjugates have gained attention over the years to overcome drawbacks of each single component. Within this context, thymol (Thy), a phenolic compound occurring in essential oils (EOs) extracted from Thymus and Origanum, has been largely studied for its antimycotic applications. However, it is characterized by a low water solubility and moderate cytotoxicity. Herein, we report an innovative HA–thymol conjugate (HA-Thy) biomaterial to circumvent the drawbacks of free thymol use by providing the polymer conjugate with the beneficial properties of both components. Preliminary biological tests evidenced the decrease of thymol cytotoxicity for the HA-Thy conjugate, paired with a promising antibiofilm formation activity against Candida albicans, similar to pure thymol, highlighting its potential application as a preservative biomaterial in formulations

    Pandemic, epidemic, endemic: B cell repertoire analysis reveals unique anti-viral responses to SARS-CoV-2, Ebola and Respiratory Syncytial Virus

    No full text
    Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune response towards different infections, enabling inference of B cell development processes. Detailed compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of pandemic, epidemic and endemic viral infections with control and vaccination samples, demonstrates general responses including increased use of IGHV4-39 in both EBOV and COVID-19 infection cohorts. We also show unique characteristics absent in RSV infection or yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class switching events while COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is also pertinent that we find significant differences in repertoire characteristics between young and old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong but immature humoral response where failures in selection of the repertoire risks off-target effects

    Pandemic, Epidemic, Endemic: B Cell Repertoire Analysis Reveals Unique Anti-Viral Responses to SARS-CoV-2, Ebola and Respiratory Syncytial Virus

    Get PDF
    Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune response towards different infections, enabling inference of B cell development processes. Detailed compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of pandemic, epidemic and endemic viral infections with control and vaccination samples, demonstrates general responses including increased use of IGHV4-39 in both Zaire Ebolavirus (EBOV) and COVID-19 patient cohorts. We also show unique characteristics absent in Respiratory Syncytial Virus or yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class switching events while COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is also pertinent that we find significant differences in repertoire characteristics between young and old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong but immature humoral response where failures in selection of the repertoire risk off-target effects
    corecore