4 research outputs found

    Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon

    Get PDF
    This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N2, 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3

    Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon

    No full text
    This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N2, 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3

    Industrial Process Description for the Recovery of Agricultural Water From Digestate

    No full text
    Currently, the reclamation and reuse of water have not reached their full potential, although more energy is needed to obtain and transport freshwater and this solution has a more serious environmental impact. Agricultural irrigation is, by far, the largest application of reclaimed water worldwide, so the proposed concept may result in the production of water that can be used, among others, for crop irrigation. This paper describes a novel installation for the recovery of the agricultural water from the digestate, along with the results of initial experiments. Currently, water is wasted, due to evaporation, in anaerobic digestion plants, as the effluent from dewatering of the digestate is discharged into lagoons. Moreover, water that stays within the interstitial space of the digestate is lost in a similar fashion. With increasing scarcity of water in rural areas, such waste should not be neglected. The study indicates that hydrothermal carbonization (HTC) enhances mechanical dewatering of the agricultural digestate and approximately 900 L of water can be recovered from one ton. Dewatered hydrochars had a lower heating value of almost 10 MJ/kg, indicating the possibility of using it as a fuel for the process. The aim of this Design Innovation Paper is to outline the newly developed concept of an installation that could enable recovery of water from, so far, the neglected resource—i.e., digestate from anaerobic digestion plants
    corecore