24 research outputs found

    Pdx1 and Ngn3 Overexpression Enhances Pancreatic Differentiation of Mouse ES Cell-Derived Endoderm Population

    Get PDF
    In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit+ endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells

    Debates in pancreatic beta cell biology: Proliferation versus progenitor differentiation and transdifferentiation in restoring β cell mass.

    No full text
    In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes

    Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors

    No full text
    The delineation of regulatory networks involved in early endocrine pancreas specification will play a crucial role in directing the differentiation of embryonic stem cells toward the mature phenotype of beta cells for cell therapy of type 1 diabetes. The transcription factor Ngn3 is required for the specification of the endocrine lineage, but its direct targets and the scope of biological processes it regulates remain elusive. We show that stepwise differentiation of embryonic stem cells using successive in vivo patterning signals can lead to simultaneous induction of Ptf1a and Pdx1 expression. In this cellular context, Ngn3 induction results in upregulation of its known direct target genes within 12 hours. Microarray gene expression profiling at distinct time points following Ngn3 induction suggested novel and diverse roles of Ngn3 in pancreas endocrine cell specification. Induction of Ngn3 expression results in regulation of the Wnt, integrin, Notch, and transforming growth factor {beta} signaling pathways and changes in biological processes affecting cell motility, adhesion, the cytoskeleton, the extracellular matrix, and gene expression. Furthermore, the combination of in vivo patterning signals and inducible Ngn3 expression enhances ESC differentiation toward the pancreas endocrine lineage. This is shown by strong upregulation of endocrine lineage terminal differentiation markers and strong expression of the hormones glucagon, somatostatin, and insulin. Importantly, all insulin(+) cells are also C-peptide(+), and glucose-dependent insulin release was 10-fold higher than basal levels. These data suggest that bona fide pancreas endocrine cells have been generated and that timely induction of Ngn3 expression can play a decisive role in directing ESC differentiation toward the endocrine lineage

    Protein methyltransferase inhibition decreases endocrine specification through the upregulation of Aldh1b1 expression.

    No full text
    Understanding the mechanisms that promote the specification of pancreas progenitors and regulate their self-renewal and differentiation will help to maintain and expand pancreas progenitor cells derived from human pluripotent stem (hPS) cells. This will improve the efficiency of current differentiation protocols of hPS cells into beta-cells and bring such cells closer to clinical applications for the therapy of diabetes. Aldehyde dehydrogenase 1b1 (Aldh1b1) is a mitochondrial enzyme expressed specifically in progenitor cells during mouse pancreas development, and we have shown that its functional inactivation leads to accelerated differentiation and deficient beta-cells. In this report, we aimed to identify small molecule inducers of Aldh1b1 expression taking advantage of a mouse embryonic stem (mES) cell Aldh1b1 lacZ reporter line and a pancreas differentiation protocol directing mES cells into pancreatic progenitors. We identified AMI-5, a protein methyltransferase inhibitor, as an Aldh1b1 inducer and showed that it can maintain Aldh1b1 expression in embryonic pancreas explants. This led to a selective reduction in endocrine specification. This effect was due to a downregulation of Ngn3, and it was mediated through Aldh1b1 since the effect was abolished in Aldh1b1 null pancreata. The findings implicated methyltransferase activity in the regulation of endocrine differentiation and showed that methyltransferases can act through specific regulators during pancreas differentiation

    Aldehyde dehydrogenase activity is necessary for beta cell development and functionality in mice.

    Get PDF
    AIMS/HYPOTHESIS: Pancreatic beta cells maintain glucose homeostasis and beta cell dysfunction is a major risk factor in developing diabetes. Therefore, understanding the developmental regulatory networks that define a fully functional beta cell is important for elucidating the genetic origins of the disease. Aldehyde dehydrogenase activity has been associated with stem/progenitor cells and we have previously shown that Aldh1b1 is specifically expressed in pancreas progenitor pools. Here we address the hypothesis that Aldh1b1 may regulate the timing of the appearance and eventual functionality of beta cells. METHODS: We generated an Aldh1b1-knockout mouse line (Aldh1b1 (tm1lacZ)) and used this to study pancreatic development, beta cell functionality and glucose homeostasis in the absence of Aldh1b1 function. RESULTS: Differentiation in the developing pancreas of Aldh1b1 (tm1lacZ) null mice was accelerated. Transcriptome analyses of newborn and adult islets showed misregulation of key beta cell transcription factors and genes crucial for beta cell function. Functional analyses showed that glucose-stimulated insulin secretion was severely compromised in islets isolated from null mice. Several key features of beta cell functionality were affected, including control of oxidative stress, glucose sensing, stimulus-coupling secretion and secretory granule biogenesis. As a result of beta cell dysfunction, homozygous mice developed glucose intolerance and age-dependent hyperglycaemia. CONCLUSIONS/INTERPRETATION: These findings show that Aldh1b1 influences the timing of the transition from the pancreas endocrine progenitor to the committed beta cell and demonstrate that changes in the timing of this transition lead to beta cell dysfunction and thus constitute a diabetes risk factor later in life. Gene Expression Omnibus (GEO) accession: GSE58025

    Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer.

    No full text
    The presence of progenitor or stem cells in the adult pancreas and their potential involvement in homeostasis and cancer development remain unresolved issues. Here, we show that mouse centroacinar cells can be identified and isolated by virtue of the mitochondrial enzyme Aldh1b1 that they uniquely express. These cells are necessary and sufficient for the formation of self-renewing adult pancreatic organoids in an Aldh1b1-dependent manner. Aldh1b1-expressing centroacinar cells are largely quiescent, self-renew, and, as shown by genetic lineage tracing, contribute to all 3 pancreatic lineages in the adult organ under homeostatic conditions. Single-cell RNA sequencing analysis of these cells identified a progenitor cell population, established its molecular signature, and determined distinct differentiation pathways to early progenitors. A distinct feature of these progenitor cells is the preferential expression of small GTPases, including Kras, suggesting that they might be susceptible to Kras-driven oncogenic transformation. This finding and the overexpression of Aldh1b1 in human and mouse pancreatic cancers, driven by activated Kras, prompted us to examine the involvement of Aldh1b1 in oncogenesis. We demonstrated genetically that ablation of Aldh1b1 completely abrogates tumor development in a mouse model of Kras(G12D)-induced pancreatic cancer
    corecore