8 research outputs found

    Rääbise (Coregonus albula) populatsiooni seisund Peipsi järves

    Get PDF

    Baltic International Fish Survey Working Group (WGBIFS)

    Get PDF
    The Baltic International Fish Survey Working Group (WGBIFS) plans, coordinates, and imple-ments demersal trawl surveys and hydroacoustic surveys in the Baltic Sea including the Baltic International Acoustic Survey (BIAS), the Baltic Acoustic Spring Survey (BASS), and the Baltic International Trawl Surveys (BITS) in the 1st and 4th quarter on an annual basis. The group com-piles results from these surveys and provides the herring, sprat, cod and flatfish abundance in-dices for the Baltic Fisheries Assessment Working Group (WGBFAS) to use as tuning fleets. In 2023, WGBIFS completed the following tasks: (1) compiled survey results from 2022 and the first half of 2023, (2) planned and coordinated all Baltic fish stocks assessment relevant surveys for the second half of 2023 and the first half of 2024, (3) updated the common survey manuals according to decisions made during the annual WGBIFS meeting. Data from the recent BITS was added to the ICES Database of Trawl Surveys (DATRAS). The Tow-Database was corrected and updated. The Access-databases for aggregated acoustic data and the ICES database of acoustic-trawl surveys for disaggregated data were updated. All countries registered collected litter ma-terials to DATRAS. The area coverage and the number of control hauls in the BASS, BIAS and GRAHS in 2022 were considered to be appropriate to the calculation of tuning indices and the data can be used for the assessment of Baltic herring and sprat stocks. The number of valid hauls accomplished during the 4th quarter 2022 and 1st quarter 2023 BITS were considered by the group as appropriate to tuning series and the data can be used for the assessment of Baltic and Kattegat cod and flatfish stocks. BIAS and BASS survey sampling variance calculation questions were discussed and standard deviation for Central Baltic herring acoustic index series calculated. In comparison exercises between the StoX survey computational method and traditional IBAS calculation methods it was found that the StoX project, developed for the WGBIFS, has small methodological differences compared to the standard calculation method used by the group, as specified in the Manual for the International Baltic Acoustic Surveys (IBAS), and is thereby caus-ing a small difference in the total number of herring and sprat., The work with transition to a more transparent calculation software (e.g. StoX) will continue during the next period with more thorough analysis of calculation methodologies. A further comparison exercise between the StoX method and traditional Gulf of Riga Herring Survey calculation method was performed using data from 11 last years. It showed no major differences in herring total abundance estimates for most of the years. However, notable differ-ences were in the age compositions of those two methods. Some errors and differences in input data (uploaded into the ICES database) were found and therefore the further analysis was post-poned until these issues are fixed. WGBIFS is planning to continue with analogical comparison exercises in the coming years before the final transition to a transparent reproducible pathway into the ICES Transparent Assessment Framework (TAF) can be done. Work towards transitioning to TAF will continue during the next 3-year period until all methodological and database differences are resolved. Inquiries from other ICES expert groups were discussed and addressed

    Trawler Engine Size Had No Effect on Baltic Herring Size/Age Structure: An Experimental Study in the Gulf of Riga, Baltic Sea

    No full text
    The Gulf of Riga stock of Baltic herring (Clupea harengus membras L.) has been maintained through several management tools. One such tool is the restriction of vessels’ main engine power (<221 kW). This restriction was implemented in the early 1990s and is based on the vessel types available in the area and on the assumption that the gear size used in trawl fishery depends on the vessel size (power). In the current study, we compared vessels with different engine powers using the same gears currently allowed in the gulf, to identify whether vessel power had any relation to catch structure. The results showed that engine power did not explain the differences in catch structure, which were more dependent on season and depth of water. Easing the power restriction of the trawl vessels in the Gulf of Riga will most likely not have a major negative impact on the sustainable management of the herring population. However, vessels with higher engine power should not use larger trawl gear than is currently used in the gulf

    Trawler Engine Size Had No Effect on Baltic Herring Size/Age Structure: An Experimental Study in the Gulf of Riga, Baltic Sea

    No full text
    The Gulf of Riga stock of Baltic herring (Clupea harengus membras L.) has been maintained through several management tools. One such tool is the restriction of vessels&rsquo; main engine power (&lt;221 kW). This restriction was implemented in the early 1990s and is based on the vessel types available in the area and on the assumption that the gear size used in trawl fishery depends on the vessel size (power). In the current study, we compared vessels with different engine powers using the same gears currently allowed in the gulf, to identify whether vessel power had any relation to catch structure. The results showed that engine power did not explain the differences in catch structure, which were more dependent on season and depth of water. Easing the power restriction of the trawl vessels in the Gulf of Riga will most likely not have a major negative impact on the sustainable management of the herring population. However, vessels with higher engine power should not use larger trawl gear than is currently used in the gulf
    corecore