37 research outputs found
Reply to Comment by D. Spemann et al [EPL 98 (2012) 57006, arXiv:1204.2992]
This article is a reply to the Comment by D. Spemann et al (arXiv:1204.2992)
in response to our paper 'Revealing common artifacts due to ferromagnetic
inclusions in highly oriented pyrolytic graphite' (EPL, 97 (2012) 47001).Comment: Reply to arXiv:1204.2992 Comment by D. Spemann et al re
arXiv:1201.6374 by Sepioni et a
Revealing common artifacts due to ferromagnetic inclusions in highly-oriented pyrolytic graphite
We report on an extensive investigation to figure out the origin of
room-temperature ferromagnetism that is commonly observed by SQUID magnetometry
in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray
microanalysis revealed the presence of micron-size magnetic clusters
(predominantly Fe) that are rare and would be difficult to detect without
careful search in a scanning electron microscope in the backscattering mode.
The clusters pin to crystal boundaries and their quantities match the amplitude
of typical ferromagnetic signals. No ferromagnetic response is detected in
samples where we could not find such magnetic inclusions. Our experiments show
that the frequently reported ferromagnetism in pristine HOPG is most likely to
originate from contamination with Fe-rich inclusions introduced presumably
during crystal growth.Comment: 8 pages, 7 figure
Limits on intrinsic magnetism in graphene
We have studied magnetization of graphene nanocrystals obtained by sonic
exfoliation of graphite. No ferromagnetism is detected at any temperature down
to 2 K. Neither do we find strong paramagnetism expected due to the massive
amount of edge defects. Rather, graphene is strongly diamagnetic, similar to
graphite. Our nanocrystals exhibit only a weak paramagnetic contribution
noticeable below 50K. The measurements yield a single species of defects
responsible for the paramagnetism, with approximately one magnetic moment per
typical graphene crystallite.Comment: 2nd version, modified in response to comment
Coherent, mechanical control of a single electronic spin
The ability to control and manipulate spins via electrical, magnetic and
optical means has generated numerous applications in metrology and quantum
information science in recent years. A promising alternative method for spin
manipulation is the use of mechanical motion, where the oscillation of a
mechanical resonator can be magnetically coupled to a spins magnetic dipole,
which could enable scalable quantum information architectures9 and sensitive
nanoscale magnetometry. To date, however, only population control of spins has
been realized via classical motion of a mechanical resonator. Here, we
demonstrate coherent mechanical control of an individual spin under ambient
conditions using the driven motion of a mechanical resonator that is
magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV)
color center in diamond. Coherent control of this hybrid mechanical/spin system
is achieved by synchronizing pulsed spin-addressing protocols (involving
optical and radiofrequency fields) to the motion of the driven oscillator,
which allows coherent mechanical manipulation of both the population and phase
of the spin via motion-induced Zeeman shifts of the NV spins energy. We
demonstrate applications of this coherent mechanical spin-control technique to
sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure
Spin-half paramagnetism in graphene induced by point defects
Using magnetization measurements, we show that point defects in graphene -
fluorine adatoms and irradiation defects (vacancies) - carry magnetic moments
with spin 1/2. Both types of defects lead to notable paramagnetism but no
magnetic ordering could be detected down to liquid helium temperatures. The
induced paramagnetism dominates graphene's low-temperature magnetic properties
despite the fact that maximum response we could achieve was limited to one
moment per approximately 1000 carbon atoms. This limitation is explained by
clustering of adatoms and, for the case of vacancies, by losing graphene's
structural stability.Comment: 14 pages, 14 figure
Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons
Two types of graphene nanoribbons: (a) potassium-split graphene nanoribbons
(GNRs), and (b) oxidative unzipped and chemically converted graphene
nanoribbons (CCGNRs) were investigated for their magnetic properties using the
combination of static magnetization and electron spin resonance measurements.
The two types of ribbons possess remarkably different magnetic properties.
While the low temperature ferromagnet-like feature is observed in both types of
ribbons, such room temperature feature persists only in potassium-split
ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a
'positive exchange bias'. Electron spin resonance measurements infer that the
carbon related defects may responsible for the observed magnetic behaviour in
both types of ribbons. Furthermore, proton hyperfine coupling strength has been
obtained from hyperfine sublevel correlation experiments performed on the GNRs.
Electron spin resonance provides no indications for the presence of potassium
(cluster) related signals, emphasizing the intrinsic magnetic nature of the
ribbons. Our combined experimental results may infer the coexistence of
ferromagnetic clusters with anti-ferromagnetic regions leading to disordered
magnetic phase. We discuss the origin of the observed contrast in the magnetic
behaviours of these two types of ribbons
sp-Electron Magnetic Clusters with a Large Spin in Graphene
Motivated by recent experimental data (Sepioni, M. et al. Phys. Rev. Lett.
2010, 105, 207205), we have studied the possibility of forming magnetic
clusters with spin S> 1/2 on graphene by adsorption of hydrogen atoms or
hydroxyl groups. Migration of hydrogen atoms and hydroxyl groups on the surface
of graphene during the delamination of HOPG led to the formation of seven-atom
or seven-OH-group clusters with S=5/2 that were of a special interest. The
coincidence of symmetry of the clusters with the graphene lattice strengthens
the stability of the cluster. For (OH)7 clusters that were situated greater
than 3 nm from one another, the reconstruction barrier to a nonmagnetic
configuration was approximately 0.4 eV, whereas for H7 clusters, there was no
barrier and the high-spin state was unstable. Stability of the high-spin
clusters increased if they were formed on top of ripples. Exchange interactions
between the clusters were studied and we have shown that the ferromagnetic
state is improbable. The role of the chemical composition of the solvent used
for the delamination of graphite is discussed.Comment: 22 pages, 1 table, 4 figures. Minor changes, few refs added. Accepted
to ACS Nan
Structure and magnetism of disordered carbon
Contains fulltext :
111434.pdf (preprint version ) (Open Access
Dual origin of defect magnetism in graphene and its reversible switching by molecular doping
Contains fulltext :
123194.pdf (preprint version ) (Open Access