922 research outputs found

    A Generalized Framework for Video Instance Segmentation

    Full text link
    The handling of long videos with complex and occluded sequences has recently emerged as a new challenge in the video instance segmentation (VIS) community. However, existing methods have limitations in addressing this challenge. We argue that the biggest bottleneck in current approaches is the discrepancy between training and inference. To effectively bridge this gap, we propose a Generalized framework for VIS, namely GenVIS, that achieves state-of-the-art performance on challenging benchmarks without designing complicated architectures or requiring extra post-processing. The key contribution of GenVIS is the learning strategy, which includes a query-based training pipeline for sequential learning with a novel target label assignment. Additionally, we introduce a memory that effectively acquires information from previous states. Thanks to the new perspective, which focuses on building relationships between separate frames or clips, GenVIS can be flexibly executed in both online and semi-online manner. We evaluate our approach on popular VIS benchmarks, achieving state-of-the-art results on YouTube-VIS 2019/2021/2022 and Occluded VIS (OVIS). Notably, we greatly outperform the state-of-the-art on the long VIS benchmark (OVIS), improving 5.6 AP with ResNet-50 backbone. Code is available at https://github.com/miranheo/GenVIS.Comment: CVPR 202

    Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development

    Full text link
    In cultured meat (CM) products the paramount significance lies in the fundamental attributes like texture and sensory of the processed end product. To cater to the tactile and gustatory preferences of real meat, the product needs to be designed to incorporate its texture and sensory attributes. Presently CM products are mainly grounded products like sausage, nugget, frankfurter, burger patty, surimi, and steak with less sophistication and need to mimic real meat to grapple with the traditional meat market. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering. Scaffolding plays an important role in CM production by aiding cell adhesion, growth, differentiation, and alignment. A wide array of scaffolding technologies has been developed for implementation in the realm of biomedical research. In recent years researchers also focus on edible scaffolding to ease the process of CM. However, it is imperative to implement cutting edge technologies like 3D scaffolds, 3D printing, electrospun nanofibers in order to advance the creation of sustainable and edible scaffolding methods in CM production, with the ultimate goal of replicating the sensory and nutritional attributes to mimic real meat cut. This review discusses recent advances in scaffolding techniques and biomaterials related to structured CM production and required advances to create muscle fiber structures to mimic real meat. Keywords: Cultured meat, Scaffolding, Biomaterials, Edible scaffolding, Electrospinning, 3D bioprinting, real meat

    Butterfly in the Esophagus: What Is Wrong?

    Get PDF

    Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway

    Get PDF
    Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes Nα-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N^α-terminal acetyl group
    corecore