17 research outputs found

    Strategy for quantum algorithm design assisted by machine learning

    Full text link
    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a "quantum student" is being taught by a "classical teacher." In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem assisted by classical main-feedback system. Our method is applicable to design quantum oracle-based algorithm. As a case study, we chose an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte-Carlo simulations that our simulator can faithfully learn quantum algorithm to solve the problem for given oracle. Remarkably, learning time is proportional to the square root of the total number of parameters instead of the exponential dependance found in the classical machine learning based method.Comment: published versio

    Quantum heuristic algorithm for traveling salesman problem

    Full text link
    We propose a quantum heuristic algorithm to solve a traveling salesman problem by generalizing Grover search. Sufficient conditions are derived to greatly enhance the probability of finding the tours with extremal costs, reaching almost to unity and they are shown characterized by statistical properties of tour costs. In particular for a Gaussian distribution of the tours along the cost we show that the quantum algorithm exhibits the quadratic speedup of its classical counterpart, similarly to Grover search.Comment: Published versio

    Characteristics of Functional Film Synthesized on the Cover Glass of Photovoltaic Modules

    No full text
    In this study, the characteristics of functional films were investigated according to the number of coatings and their heat treatment times. The functional coating films were deposited on glass substrates made of the same material as the cover glass of photovoltaic (PV) modules. Each film was coated once by brushing with a special silica-based solution, and each heat treatment was done using a hot-air fan for 2 min at 300 °C. The substrates were coated once, twice, and thrice, respectively, and were annealed once, twice, and thrice by drying and cooling alternately. The specimens were then analyzed for their anti-pollution properties, contact angles, light transmittance, and mechanical properties. The anti-pollution function was confirmed through a self-cleaning test, while the contact angle and light transmittance were examined using special equipment. Mechanical properties, including hardness and adhesion, were confirmed using the standard hardness testing method (ASTM D3363) such as those using an H-9H, F, HB, or B-6B pencil (Mitsubishi, Japan) and a standard adhesion testing method (ASTM D3359). It was confirmed that the film coated once yielded a very low contact angle of 8.9° and very good anti-pollution properties. Its adhesion and strength also showed high values of 5B and 9H, respectively

    Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation

    No full text
    This study evaluates the capacity of various inorganic oxidants (IO4 -, HSO5 -, S2O8 2-, H2O2, and BrO3 -) to act as alternative electron acceptors for WO3-mediated photocatalytic oxidation. Combination with IO4 - drastically increased the rate of photocatalytic degradation of 4-chlorophenol by WO3, while the other oxyanions only negligibly improved the photocatalytic activity. The extent of the photocatalytic performance enhancement in the presence of inorganic oxidants correlated well with the efficiencies for: (1) hydroxylation of benzoic acid as an OH probe, (2) dechlorination of dichloroaceate as a hole scavenger, and (3) water oxidation with O2 evolution. The results suggest that the promoted charge separation primarily causes kinetic enhancement in photocatalytic degradation using the WO3/IO4 - system. In marked contrast to the substrate-dependent activity of the photochemically activated IO4 - (generating selective IO3), the efficiency of the WO3/IO4 - system for photocatalytic degradation did not sensitively depend on the type of target organic compound, which implies the existence of a minor contribution of the photocatalytic reduction pathway associated with the production of IO3 as a secondary oxidant. On the other hand, the insignificant inhibitory effect of methanol as an OH quencher may reveal the possible involvement of SO4 - in the improved photocatalytic activity of the WO3/HSO5 - system. The alternative use of platinized WO3, where the interfacial electron transfer occurs in a concerted step, achieved a highly accelerated photocatalytic oxidation in the presence of HSO5 - and polyoxometalates as electron scavengers. In particular, the surface loading of nanoscale platinum appeared to retard the reaction route for SO4 - generation associated with a one-electron transfer.close0
    corecore