328 research outputs found

    Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission.

    Get PDF
    We report on the fabrication of novel InGaN nanowires (NWs) with improved crystalline quality and high radiative efficiency for applications as nanoscale visible light emitters. Pristine InGaN NWs grown under a uniform In/Ga molar flow ratio (UIF) exhibited multi-peak white-like emission and a high density of dislocation-like defects. A phase separation and broad emission with non-uniform luminescent clusters were also observed for a single UIF NW investigated by spatially resolved cathodoluminescence. Hence, we proposed a simple approach based on engineering the axial In content by increasing the In/Ga molar flow ratio at the end of NW growth. This new approach yielded samples with a high luminescence intensity, a narrow emission spectrum, and enhanced crystalline quality. Using time-resolved photoluminescence spectroscopy, the UIF NWs exhibited a long radiative recombination time (τr) and low internal quantum efficiency (IQE) due to strong exciton localization and carrier trapping in defect states. In contrast, NWs with engineered In content demonstrated three times higher IQE and a much shorter τr due to mitigated In fluctuation and improved crystal quality

    Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts

    Get PDF
    We demonstrate an N719 dye sensitized solar cell based on Cu 2FeSnS4 (CFTS) as a counter electrode. The elements for the material are all earth abundant and environmentally benign. The power conversion efficiency of a DSSC using CFTS was comparable to that of a DSSC using Pt under A.M. 1.5G (100 mW cm-2).close3

    Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the effects of temperature and magnetic field on the electronic structure of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using optical spectroscopy. As the magnetic ordering of the system was disturbed, a systematic change in the electronic structure was commonly identified in this series. The optical absorption peak near 1.7 eV showed an unexpectedly large shift of more than 150 meV from 300 K to 15 K, accompanied by an anomaly of the shift at the Neel temperature. The magnetic field dependent measurement clearly revealed a sizable shift of the corresponding peak when a high magnetic field was applied. Our findings indicated strong coupling between the magnetic ordering and the electronic structure in the multiferroic hexagonal RMnO3 compounds.Comment: 16 pages including 4 figure

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid

    The Diagnostic Accuracy of Dermoscopy for Scabies

    Get PDF

    Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study

    Get PDF
    Objectives. Neuromuscular electrical stimulation (NMES) has been used in the field of rehabilitation for a long time. Previous studies on NMES have focused on the peripheral effect, in contrast, relatively little is known about the effect on the cerebral cortex. In the current study, we attempted to investigate the change of cortical activation pattern induced by NMES during execution of hand movements in normal subjects, using functional near infrared spectroscopy (fNIRS). Methods. Twelve healthy normal subjects were randomly assigned to the NMES group (six subjects) and the sham group (six subjects). We measured oxy-hemoglobin (HbO) in six regions of interest (ROI) during pre-NMES and post-NMES motor phase; the left dorsolateral and ventrolateral prefrontal cortex, premotor cortex, primary sensory-motor cortex (SM1), hand somatotopic area of SM1, and posterior parietal cortex. Between the pre-NMES and the post-NMES motor phases, real or sham NMES was applied on finger and wrist extensors of all subjects during a period of 5 minutes. Results: In all groups, during the pre-NMES motor phase, the HbO value in the hand somatotopic area of the left SM1 was higher than those of other ROIs. In the NMES group, during the post-NMES motor phase, HbO value variation in the hand somatotopic area of the left SM1 showed a significant decrease, compared with that of sham group (p < 0.05). However, in the sham group, similar aspect of results in HbO values of all ROIs was observed between pre-NMES and post-NMES motor phases (p > 0.05). Conclusions: Results of this study showed that NMES induced a decrease of cortical activation during execution of hand movements. This finding appears to indicate that application of NMES can increase the efficiency of the cerebral cortex during execution of motor tasks. © 2014 Jang et al.; licensee BioMed Central Ltd.1

    Changes in the bony alignment of the foot after tendo-Achilles lengthening in patients with planovalgus deformity

    Get PDF
    Background This study was performed to investigate the change in the bony alignment of the foot after tendo-Achilles lengthening (TAL) and the factors that affect these changes in patients with planovalgus foot deformity. Methods Consecutive 97 patients (150 feet; mean age 10 years; range 5.1–35.7) with Achilles tendon contracture (ATC) and planovalgus foot deformity who underwent TAL were included. All patients underwent preoperative and postoperative weight-bearing anteroposterior (AP) or lateral (LAT) foot radiographics. Changes in AP talo-1st metatarsal angle, AP talo-2nd metatarsal angle, LAT talo-1st metatarsal angle, and calcaneal pitch angle and the factors affecting such changes after TAL were analyzed using lineal mixed model. Results There were no significant change in AP talo-1st metatarsal angle and AP talo-2nd metatarsal angle after TAL in patients with cerebral palsy (CP) (p = 0.236 and 0.212). However, LAT talo-1st metatarsal angle and calcaneal pitch angle were significantly improved after TAL (13.0°, p < 0.001 and 4.5°, p < 0.001). Age was significantly associated with the change in LAT talo-1st metatarsal angle after TAL (p = 0.028). The changes in AP talo-1st metatarsal angle, AP talo-2nd metatarsal angle, and calcaneal pitch angle after TAL were not significantly associated with the diagnosis (p = 0.879, 0.903, and 0.056). However, patients with CP showed more improvement in LAT talo-1st metatarsal angle (− 5.0°, p = 0.034) than those with idiopathic cause. Conclusion This study showed that TAL can improve the bony alignment of the foot in patients with planovalgus and ATC. We recommend that physicians should consider this studys findings when planning operative treatment for such patients.This study was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. NRF2019R1C1C1010352)
    corecore