20 research outputs found

    Ring finger protein 126 (RNF126) suppresses ionizing radiation-induced p53-binding protein 1 (53BP1) focus formation

    Get PDF
    Cells have evolved sophisticated mechanisms to maintain genomic integrity in response to DNA damage. Ionizing radiation (IR)-induced DNA damage results in the formation of IR-induced foci (iRIF) in the nucleus. The iRIF formation is part of the DNA damage response (DDR), which is an essential signaling cascade that must be strictly regulated because either the loss of or an augmented DDR leads to loss of genome integrity. Accordingly, negative regulation of the DDR is as critical as its activation. In this study, we have identified ring finger protein 126 (RNF126) as a negative regulator of the DDR from a screen of iRIF containing 53BP1. RNF126 overexpression abolishes not only the formation of 53BP1 iRIF but also of RNF168, FK2, RAP80, and BRCA1. However, the iRIF formation of H2AX, MDC1, and RNF8 is maintained, indicating that RNF126 acts between RNF8 and RNF168 during the DDR. In addition, RNF126 overexpression consistently results in the loss of RNF168-mediated H2A monoubiquitination at lysine 13/15 and inhibition of the non-homologous end joining capability. Taken together, our findings reveal that RNF126 is a novel factor involved in the negative regulation of DDR, which is important for sustaining genomic integrity

    Impaired auditory evoked potentials and oscillations in frontal and auditory cortex of a schizophrenia mouse model.

    No full text
    Objectives: In patients with schizophrenia, g-band (30–70 Hz) auditory steady-state electroencephalogram responses (ASSR) are reduced in power and phase locking. Here, we examined whether g-ASSR deficits are also present in a mouse model of schizophrenia, whose behavioural changes have shown schizophrenia-like endophenotypes. Methods: Electroencephalogram in frontal cortex and local field potential in primary auditory cortex were recorded in phospholipase C b1 (PLC-b1) null mice during auditory binaural click trains at different rates (20–50 Hz), and compared with wildtype littermates. Results: In mutant mice, the ASSR power was reduced at all tested rates. The phase locking in frontal cortex was reduced in the b band (20 Hz) but not in the g band, whereas the phase locking in auditory cortex was reduced in the g band. The cortico-cortical connectivity between frontal and auditory cortex was significantly reduced in mutant mice. Conclusions: The tested mouse model of schizophrenia showed impaired electrophysiological responses to auditory steady state stimulation, suggesting that it could be useful for preclinical studies of schizophrenia’’. (c) 2016 Taylor & Francis2

    Physical and Functional Interaction between 5-HT6 Receptor and Nova-1

    No full text
    5-HT6 receptor (5-HT6R) is implicated in cognitive dysfunction, mood disorder, psychosis, and eating disorders. However, despite its significant role in regulating the brain functions, regulation of 5-HT6R at the molecular level is poorly understood. Here, using yeast two-hybrid assay, we found that human 5-HT6R directly binds to neuro-oncological ventral antigen 1 (Nova-1), a brain-enriched splicing regulator. The interaction between 5-HT6R and Nova-1 was confirmed using GST pull-down and co-immunoprecipitation assays in cell lines and rat brain. The splicing activity of Nova-1 was decreased upon overexpression of 5-HT6R, which was examined by detecting the spliced intermediates of gonadotropin-releasing hormone (GnRH), a known pre-mRNA target of Nova-1, using RT-PCR. In addition, overexpression of 5-HT6R induced the translocation of Nova-1 from the nucleus to cytoplasm, resulting in the reduced splicing activity of Nova-1. In contrast, overexpression of Nova-1 reduced the activity and the total protein levels of 5-HT6R. Taken together, these results indicate that when the expression levels of 5-HT6R or Nova-1 protein are not properly regulated, it may also deteriorate the function of the other. Copyright © Experimental Neurobiology 2019.1

    3-Hydroxybutyrate Ameliorates the Progression of Diabetic Nephropathy

    No full text
    Studies report beneficial effects of 3-hydroxybutyrate (3-OHB) on the treatment of type 2 diabetes and obesity, but the effects of 3-OHB on diabetic nephropathy have not been elucidated. This study was designed to investigate the efficacy and mechanism of 3-OHB against progression of diabetic nephropathy (DN). Mice (db/db) were fed normal chow, high-fat, or ketogenic diets (KD) containing precursors of 3-OHB. Hyperglycemia was determined based on random glucose level (≥250 mg/dL). Fasting blood glucose and body weights were measured once a week. Twenty four-hour urine albumin to creatinine ratio was determined 5 weeks after the differential diet. Energy expenditure was measured 9 weeks after the differential diet. Body weights were significantly lower in the KD group than those in other groups, but no significant differences in fasting blood glucose levels among three groups were observed. Urine albumin to creatinine ratio and serum blood urea nitrogen (BUN) to creatinine ratio in the KD group were significantly lower than in other groups. Histologic and quantitative analysis of mesangial area suggested that KD delayed the progression of DN phenotype in db/db mice. Metabolic cage analysis also revealed that KD increased energy expenditure in db/db mice. In vitro studies with proximal tubular cells revealed that 3-OHB stimulated autophagic flux. 3-OHB increased LC3 I to LC3 II ratio, phosphorylation of AMPK, beclin, p62 degradation, and NRF2 expression. Moreover, we found that 3-OHB attenuated high glucose-induced reactive oxygen species (ROS) levels in proximal tubular cells. In vivo study also confirmed increased LC3 and decreased ROS levels in the kidney of KD mice. In summary, this study shows in both in vivo and in vitro models that 3-OHB delays the progression of DN by augmenting autophagy and inhibiting oxidative stress

    Ascorbic Acid Mitigates D-galactose-Induced Brain Aging by Increasing Hippocampal Neurogenesis and Improving Memory Function

    No full text
    Ascorbic acid is essential for normal brain development and homeostasis. However, the effect of ascorbic acid on adult brain aging has not been determined. Long-term treatment with high levels of D-galactose (D-gal) induces brain aging by accumulated oxidative stress. In the present study, mice were subcutaneously administered with D-gal (150 mg/kg/day) for 10 weeks; from the seventh week, ascorbic acid (150 mg/kg/day) was orally co-administered for four weeks. Although D-gal administration alone reduced hippocampal neurogenesis and cognitive functions, co-treatment of ascorbic acid with D-gal effectively prevented D-gal-induced reduced hippocampal neurogenesis through improved cellular proliferation, neuronal differentiation, and neuronal maturation. Long-term D-gal treatment also reduced expression levels of synaptic plasticity-related markers, i.e., synaptophysin and phosphorylated Ca2+/calmodulin-dependent protein kinase II, while ascorbic acid prevented the reduction in the hippocampus. Furthermore, ascorbic acid ameliorated D-gal-induced downregulation of superoxide dismutase 1 and 2, sirtuin1, caveolin-1, and brain-derived neurotrophic factor and upregulation of interleukin 1 beta and tumor necrosis factor alpha in the hippocampus. Ascorbic acid-mediated hippocampal restoration from D-gal-induced impairment was associated with an enhanced hippocampus-dependent memory function. Therefore, ascorbic acid ameliorates D-gal-induced impairments through anti-oxidative and anti-inflammatory effects, and it could be an effective dietary supplement against adult brain aging

    SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion

    No full text
    Abstract Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway
    corecore