33 research outputs found

    OASIS: Online Application for the Survival Analysis of Lifespan Assays Performed in Aging Research

    Get PDF
    Aging is a fundamental biological process. Characterization of genetic and environmental factors that influence lifespan is a crucial step toward understanding the mechanisms of aging at the organism level. To capture the different effects of genetic and environmental factors on lifespan, appropriate statistical analyses are needed.We developed an online application for survival analysis (OASIS) that helps conduct various novel statistical tasks involved in analyzing survival data in a user-friendly manner. OASIS provides standard survival analysis results including Kaplan-Meier estimates and mean/median survival time by taking censored survival data. OASIS also provides various statistical tests including comparison of mean survival time, overall survival curve, and survival rate at specific time point. To visualize survival data, OASIS generates survival and log cumulative hazard plots that enable researchers to easily interpret their experimental results. Furthermore, we provide statistical methods that can analyze variances among survival datasets. In addition, users can analyze proportional effects of risk factors on survival.OASIS provides a platform that is essential to facilitate efficient statistical analyses of survival data in the field of aging research. Web application and a detailed description of algorithms are accessible from http://sbi.postech.ac.kr/oasis

    Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C-elegans

    Get PDF
    Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.11Ysciescopu

    RNA helicase SACY-1 is required for the longevity caused by various genetic perturbations in Caenorhabditis elegans

    No full text
    RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1.112sciescopu

    RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans

    No full text
    ABSTRACT: RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1. © 2016 Taylor & Francis.FALS

    RNA helicase SACY-1 is required for longevity caused by various genetic perturbationsin Caenorhabditis elegans

    No full text
    RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1. © 2016 Taylor & Francis1221sciescopu

    Inhibition of elongin C promotes longevity and protein homeostasis via HIF

    No full text
    The transcription factor hypoxia‐inducible factor 1 (HIF‐1) is crucial for responses to low oxygen and promotes longevity in Caenorhabditis elegans. We previously performed a genomewide RNA interference screen and identified many genes that act as potential negative regulators of HIF‐1. Here, we functionally characterized these genes and found several novel genes that affected lifespan. The worm ortholog of elongin C, elc‐1, encodes a subunit of E3 ligase and transcription elongation factor. We found that knockdown of elc‐1 prolonged lifespan and delayed paralysis caused by impaired protein homeostasis. We further showed that elc‐1 RNA interference increased lifespan and protein homeostasis by upregulating HIF‐1. The roles of elongin C and HIF‐1 are well conserved in eukaryotes. Thus, our study may provide insights into the aging regulatory pathway consisting of elongin C and HIF‐1 in complex metazoans

    Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies

    Get PDF
    © 2021, The Author(s).Small RNAs that originate from transfer RNA (tRNA) species, tRNA-derived fragments (tRFs), play diverse biological functions but little is known for their association with aging. Moreover, biochemical aspects of tRNAs limit discovery of functional tRFs by high throughput sequencing. In particular, genes encoding tRNAs exist as multiple copies throughout genome, and mature tRNAs have various modified bases, contributing to ambiguities for RNA sequencing-based analysis of tRFs. Here, we report age-dependent changes of tRFs in Caenorhabditis elegans. We first analyzed published RNA sequencing data by using a new strategy for tRNA-associated sequencing reads. Our current method used unique mature tRNAs as a reference for the sequence alignment, and properly filtered out false positive enrichment for tRFs. Our analysis successfully distinguished de novo mutation sites from differences among homologous copies, and identified potential RNA modification sites. Overall, the majority of tRFs were upregulated during aging and originated from 5′-ends, which we validated by using Northern blot analysis. Importantly, we revealed that the major source of tRFs upregulated during aging was the tRNAs with abundant gene copy numbers. Our analysis suggests that tRFs are useful biomarkers of aging particularly when they originate from abundant homologous gene copies.11Nsciescopu

    RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in <i>Caenorhabditis elegans</i>

    No full text
    <p>RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in <i>Caenorhabditis elegans</i>. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of <i>daf-2</i>/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1.</p
    corecore