23,287 research outputs found

    Of mice and men: Sparse statistical modeling in cardiovascular genomics

    Full text link
    In high-throughput genomics, large-scale designed experiments are becoming common, and analysis approaches based on highly multivariate regression and anova concepts are key tools. Shrinkage models of one form or another can provide comprehensive approaches to the problems of simultaneous inference that involve implicit multiple comparisons over the many, many parameters representing effects of design factors and covariates. We use such approaches here in a study of cardiovascular genomics. The primary experimental context concerns a carefully designed, and rich, gene expression study focused on gene-environment interactions, with the goals of identifying genes implicated in connection with disease states and known risk factors, and in generating expression signatures as proxies for such risk factors. A coupled exploratory analysis investigates cross-species extrapolation of gene expression signatures--how these mouse-model signatures translate to humans. The latter involves exploration of sparse latent factor analysis of human observational data and of how it relates to projected risk signatures derived in the animal models. The study also highlights a range of applied statistical and genomic data analysis issues, including model specification, computational questions and model-based correction of experimental artifacts in DNA microarray data.Comment: Published at http://dx.doi.org/10.1214/07-AOAS110 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A New Statistic for Analyzing Baryon Acoustic Oscillations

    Full text link
    We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. This indicates that any distance measurements obtained from omega_0 and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information using either omega_0 or P(k) from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final accepted versio

    The Dropping of In-Medium Hadron Mass in Holographic QCD

    Get PDF
    We study the baryon density dependence of the vector meson spectrum using the D4/D6 system together with the compact D4 baryon vertex. We find that the vector meson mass decreases almost linearly in density at low density for small quark mass, but saturates to a finite non-zero value for large density. We also compute the density dependence of the η\eta\prime mass and the η\eta\prime velocity. We find that in medium, our model is consistent with the GMOR relation up to a few times the normal nuclear density. We compare our hQCD predictions with predictions made based on hidden local gauge theory that is constructed to model QCD.Comment: 20 pages, 7 figure

    Electronic properties of correlated metals in the vicinity of a charge order transition: optical spectroscopy of α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (MM = NH4_4, Rb, Tl)

    Full text link
    The infrared spectra of the quasi-two-dimensional organic conductors α\alpha-(BEDT-TTF)2_2MMHg(SCN)4_4 (MM = NH4_4, Rb, Tl) were measured in the range from 50 to 7000 \cm down to low temperatures in order to explore the influence of electronic correlations in quarter-filled metals. The interpretation of electronic spectra was confirmed by measurements of pressure dependant reflectance of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 at T=300 K. The signatures of charge order fluctuations become more pronounced when going from the NH4_4 salt to Rb and further to Tl compounds. On reducing the temperature, the metallic character of the optical response in the NH4_4 and Rb salts increases, and the effective mass diminishes. For the Tl compound, clear signatures of charge order are found albeit the metallic properties still dominate. From the temperature dependence of the electronic scattering rate the crossover temperature is estimated below which the coherent charge-carriers response sets in. The observations are in excellent agreement with recent theoretical predictions for a quarter-filled metallic system close to charge order

    Assembly and force measurement with SPM-like probes in holographic optical tweezers

    Get PDF
    We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space
    corecore