18,560 research outputs found
Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition
Temperature-dependent resistivity of graphene grown by chemical vapor
deposition (CVD) is investigated. We observe in low mobility CVD graphene
device a strong insulating behavior at low temperatures and a metallic behavior
at high temperatures manifesting a non-monotonic in the temperature dependent
resistivity.This feature is strongly affected by carrier density modulation. To
understand this anomalous temperature dependence, we introduce thermal
activation of charge carriers in electron-hole puddles induced by randomly
distributed charged impurities. Observed temperature evolution of resistivity
is then understood from the competition among thermal activation of charge
carriers, temperature-dependent screening and phonon scattering effects. Our
results imply that the transport property of transferred CVD-grown graphene is
strongly influenced by the details of the environmentComment: 7 pages, 3 figure
Pressure effects on the heavy-fermion antiferromagnet CeAuSb2
The f-electron compound CeAuSb2, which crystallizes in the ZrCuSi2-type
tetragonal structure, orders antiferromagnetically between 5 and 6.8 K, where
the antiferromagnetic transition temperature T_N depends on the occupancy of
the Au site. Here we report the electrical resistivity and heat capacity of a
high-quality crystal CeAuSb2 with T_N of 6.8 K, the highest for this compound.
The magnetic transition temperature is initially suppressed with pressure, but
is intercepted by a new magnetic state above 2.1 GPa. The new phase shows a
dome shape with pressure and coexists with another phase at pressures higher
than 4.7 GPa. The electrical resistivity shows a T^2 Fermi liquids behavior in
the complex magnetic state, and the residual resistivity and the T^2
resistivity coefficient increases with pressure, suggesting the possibility of
a magnetic quantum critical point at a higher pressure.Comment: 5 pages, 5 firure
Rigidity of minimal submanifolds in hyperbolic space
We prove that if an -dimensional complete minimal submanifold in
hyperbolic space has sufficiently small total scalar curvature then has
only one end. We also prove that for such there exist no nontrivial
harmonic 1-forms on
Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3
We report on the electronic properties of superlattices composed of three
different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3
substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn
2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly
originating from Mn e_g electrons. Furthermore, the density of states near the
Fermi energy and the magnetization obey a similar temperature dependence,
suggesting a correlation between the spin and charge degrees of freedom at the
interfaces of these oxides
A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction
International audienceIn addition to the uncertainty in future boundary conditions of precipitation and temperature (i.e. the meteorological uncertainty), parametric and structural uncertainties in the hydrologic models and uncertainty in the model initial conditions (i.e. the hydrologic uncertainties) constitute a major source of error in hydrologic prediction. As such, accurate accounting of both meteorological and hydrologic uncertainties is critical to producing reliable probabilistic hydrologic prediction. In this paper, we describe and evaluate a statistical procedure that accounts for hydrologic uncertainty in short-range (1 to 5 days ahead) ensemble streamflow prediction (ESP). Referred to as the ESP post-processor, the procedure operates on ensemble traces of model-predicted streamflow that reflect only the meteorological uncertainty and produces post-processed ensemble traces that reflect both the meteorological and hydrologic uncertainties. A combination of probability matching and regression, the procedure is simple, parsimonious and robust. For a critical evaluation of the procedure, independent validation is carried out for five basins of the Juniata River in Pennsylvania, USA, under a very stringent setting. The results indicate that the post-processor is fully capable of producing ensemble traces that are unbiased in the mean and in the probabilistic sense. Due primarily to the uncertainties in the cumulative probability distributions (CDF) of observed and simulated flows, however, the unbiasedness may be compromised to a varying degree in real world situations. It is also shown, however, that the uncertainties in the CDF's do not significantly diminish the value of post-processed ensemble traces for decision making, and that probabilistic prediction based on post-processed ensemble traces significantly improves the value of single-value prediction at all ranges of flow
Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods
We theoretically describe the charge ordering (CO) metal-insulator transition
based on a quasi-one-dimensional extended Hubbard model, and investigate the
finite temperature () properties across the transition temperature, . In order to calculate dependence of physical quantities such as the
spin susceptibility and the electrical resistivity, both above and below
, a theoretical scheme is developed which combines analytical
methods with numerical calculations. We take advantage of the renormalization
group equations derived from the effective bosonized Hamiltonian, where Lanczos
exact diagonalization data are chosen as initial parameters, while the CO order
parameter at finite- is determined by quantum Monte Carlo simulations. The
results show that the spin susceptibility does not show a steep singularity at
, and it slightly increases compared to the case without CO because
of the suppression of the spin velocity. In contrast, the resistivity exhibits
a sudden increase at , below which a characteristic dependence
is observed. We also compare our results with experiments on molecular
conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2
We report the pressure response of charge-density-wave (CDW) and
ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa.
The CDW transition temperature (T_{CDW}), which is reflected as a sharp
inflection in the electrical resistivity, is almost independent of pressure up
to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7
K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in
T_{CDW}, the first-order FM phase transition, which decreases with applied
pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions
and the lower transition changes its nature to second order above 2.18 GPa.
Enhancement both in the residual resistivity and the Fermi-liquid T^2
coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that
arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
- …