4 research outputs found

    Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C>T polymorphism in non-small cell lung carcinoma

    Get PDF
    Background: Tumor-specific, coordinate expression of cancer-testis (CT) genes, mapping to the X chromosome, is observed in more than 60% of non-small cell lung cancer (NSCLC) patients. Although CT gene expression has been unequivocally related to DNA demethylation of promoter regions, the underlying mechanism leading to loss of promoter methylation remains elusive. Polymorphisms of enzymes within the 1-carbon pathway have been shown to affect S-adenosyl methionine (SAM) production, which is the sole methyl donor in the cell. Allelic variants of several enzymes within this pathway have been associated with altered SAM levels either directly, or indirectly as reflected by altered levels of SAH and Homocysteine levels, and altered levels of DNA methylation. We, therefore, asked whether the five most commonly occurring polymorphisms in four of the enzymes in the 1-carbon pathway associated with CT gene expression status in patients with NSCLC.Methods: Fifty patients among a cohort of 763 with NSCLC were selected based on CT gene expression status and typed for five polymorphisms in four genes known to affect SAM generation by allele specific q-PCR and RFLP.Results: We identified a significant association between CT gene expression and the MTHFR 677 CC genotype, as well as the C allele of the SNP, in this cohort of patients. Multivariate analysis revealed that the genotype and allele strongly associate with CT gene expression, independent of potential confounders.Conclusions: Although CT gene expression is associated with DNA demethylation, in NSCLC, our data suggests this is unlikely to be the result of decreased MTHFR function. © 2013 Senses et al.; licensee BioMed Central Ltd

    Phenotype-based variation as a biomarker of sensitivity to molecularly targeted therapy in melanoma

    Get PDF
    Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to various drugs. In this study, we aimed to define a minimal signature that could be used to distinguish melanoma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG. © The Royal Society of Chemistry

    MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours

    Get PDF
    Background: MicroRNAs may act as oncogenes or tumour suppressor genes, which make these small molecules potential diagnostic/prognostic factors and targets for anticancer therapies. Several common oncogenic microRNAs have been found for canine mammary cancer and human breast cancer. On account of this, large-scale profiling of microRNA expression in canine mammary cancer seems to be important for both dogs and humans. Methods: Expression profiles of 317 microRNAs in 146 canine mammary tumours of different histological type, malignancy grade and clinical history (presence/absence of metastases) and in 25 control samples were evaluated. The profiling was performed using microarrays. Significance Analysis of Microarrays test was applied in the analysis of microarray data (both unsupervised and supervised data analyses were performed). Validation of the obtained results was performed using real-time qPCR. Subsequently, predicted targets for the microRNAs were searched for in miRBase. Results: Results of the unsupervised analysis indicate that the primary factor separating the samples is the metastasis status. Predicted targets for microRNAs differentially expressed in the metastatic vs. non-metastatic group are mostly engaged in cell cycle regulation, cell differentiation and DNA-damage repair. On the other hand, the supervised analysis reveals clusters of differentially expressed microRNAs unique for the tumour type, malignancy grade and metastasis factor. Conclusions: The most significant difference in microRNA expression was observed between the metastatic and non-metastatic group, which suggests a more important role of microRNAs in the metastasis process than in the malignant transformation. Moreover, the differentially expressed microRNAs constitute potential metastasis markers. However, validation of cfa-miR-144, cfa-miR-32 and cfa-miR-374a levels in blood samples did not follow changes observed in the non-metastatic and metastatic tumours. © 2017 The Author(s)

    Adjuvant Autologous Melanoma Vaccine for Macroscopic Stage III Disease: Survival, Biomarkers, and Improved Response to CTLA-4 Blockade

    Get PDF
    Background. There is not yet an agreed adjuvant treatment for melanoma patients with American Joint Committee on Cancer stages III B and C. We report administration of an autologous melanoma vaccine to prevent disease recurrence. Patients and Methods. 126 patients received eight doses of irradiated autologous melanoma cells conjugated to dinitrophenyl and mixed with BCG. Delayed type hypersensitivity (DTH) response to unmodified melanoma cells was determined on the vaccine days 5 and 8. Gene expression analysis was performed on 35 tumors from patients with good or poor survival. Results. Median overall survival was 88 months with a 5-year survival of 54%. Patients attaining a strong DTH response had a significantly better (p = 0.0001) 5-year overall survival of 75% compared with 44% in patients without a strong response. Gene expression array linked a 50-gene signature to prognosis, including a cluster of four cancer testis antigens: CTAG2 (NY-ESO-2), MAGEA1, SSX1, and SSX4. Thirty-five patients, who received an autologous vaccine, followed by ipilimumab for progressive disease, had a significantly improved 3-year survival of 46% compared with 19% in nonvaccinated patients treated with ipilimumab alone (p = 0.007). Conclusion. Improved survival in patients attaining a strong DTH and increased response rate with subsequent ipilimumab suggests that the autologous vaccine confers protective immunity. � 2016 Michal Lotem et al
    corecore