99 research outputs found

    Can we evaluate population screening strategies in UK general practice? A pilot randomised controlled trial comparing postal and opportunistic screening for genital chlamydial infection

    Get PDF
    STUDY OBJECTIVE: To assess whether opportunistic and postal screening strategies for Chlamydia trachomatis can be compared with usual care in a randomised trial in general practice DESIGN: Feasibility study for a randomised controlled trial. SETTING: Three West of Scotland general medical practices: one rural, one urban/deprived and one urban/affluent. PARTICIPANTS: 600 women aged 16-30 years, 200 from each of three participating practices selected at random from a sample of West of Scotland practices that had expressed interest in the study. The women could opt out of the study. Those who did not were randomly assigned to one of three groups: postal screening, opportunistic screening or usual care. MAIN RESULTS: 38% (85/221) of the approached practices expressed interest in the study. Data were collected successfully from the 3 participating practices, although intensive support was required. There were considerable workload implications for staff, both in relation to implementing the screening strategies and managing the research process. 124 of the 600 women opted out of the study. During the four-month study period, 55% (81/146) of the control group attended their practice but none was offered screening. 59% (80/136) women in the opportunistic group attended their practice of whom 55% (44/80) were offered screening. Of those, 64% (28/44) accepted, representing 21% of the opportunistic group. 48% (59/124) of the postal group returned samples. CONCLUSION: A randomised controlled trial comparing postal and opportunistic screening for chlamydial infection in general practice is feasible, though resource intensive. There may be problems with generalising from screening trials in which patients may opt out from the offer of screening

    Comparison of Molecular and Phenotypic Methods for the Detection and Characterization of Carbapenem Resistant Enterobacteriaceae

    Get PDF
    In recent years, there has been a rapid dissemination of carbapenem resistant Enterobacteriaceae (CRE). This study aimed to compare phenotypic and molecular methods for detection and characterization of CRE isolates at a large tertiary care hospital in Saudi Arabia. This study was carried out between January 2011 and November 2013 at the King Khalid University Hospital (KKUH) in Saudi Arabia. Determination of presence of extended-spectrum beta-lactamases (ESBL) and carbapenem resistance was in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. Phenotypic classification was done by the MASTDISCSTM ID inhibitor combination disk method. Genotypic characterization of ESBL and carbapenemase genes was performed by the Check-MDR CT102. Diversilab rep-PCR was used for the determination of clonal relationship. Of the 883 ESBL-positive Enterobacteriaceae detected during the study period, 14 (1.6%) isolates were carbapenem resistant. Both the molecular genotypic characterization and phenotypic testing were in agreement in the detection of all 8 metalo-beta-lactamases (MBL) producing isolates. Of these 8 MBL-producers, 5 were positive for blaNDM gene and 3 were positive for blaVIM gene. Molecular method identified additional blaOXA gene isolates while MASTDISCSTM ID detected one AmpC producer isolate. Both methods agreed in identifying 2 carbapenem resistant isolates which were negative for carbapenemase genes. Diversilab rep-PCR analysis of the 9 Klebsiella pneumoniae isolates revealed polyclonal distribution into eight clusters. MASTDISCSTM ID is a reliable simple cheap phenotypic method for detection of majority of carbapenemase genes with the exception of the blaOXA gene. We recommend to use such method in the clinical laboratory

    Regulation of Angiotensin- Converting Enzyme 2 in Obesity: Implications for COVID-19

    Get PDF
    The ongoing COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Age, smoking, obesity, and chronic diseases such as cardiovascular disease and diabetes have been described as risk factors for severe complications and mortality in COVID-19. Obesity and diabetes are usually associated with dysregulated lipid synthesis and clearance, which can initiate or aggravate pulmonary inflammation and injury. It has been shown that for viral entry into the host cell, SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptors present on the cells. We aimed to characterize how SARS-CoV-2 dysregulates lipid metabolism pathways in the host and the effect of dysregulated lipogenesis on the regulation of ACE2, specifically in obesity. In our study, through the re-analysis of publicly available transcriptomic data, we first found that lung epithelial cells infected with SARS-CoV-2 showed upregulation of genes associated with lipid metabolism, including the SOC3 gene, which is involved in the regulation of inflammation and inhibition of leptin signaling. This is of interest as viruses may hijack host lipid metabolism to allow the completion of their viral replication cycles. Furthermore, a dataset using a mouse model of diet-induced obesity showed a significant increase in Ace2 expression in the lungs, which negatively correlated with the expression of genes that code for sterol response element-binding proteins 1 and 2 (SREBP). Suppression of Srebp1 showed a significant increase in Ace2 expression in the lung. Moreover, ACE2 expression in human subcutaneous adipose tissue can be regulated through changes in diet. Validation of the in silico data revealed a higher expression of ACE2, TMPRSS2 and SREBP1 in vitro in lung epithelial cells from obese subjects compared to non-obese subjects. To our knowledge this is the first study to show upregulation of ACE2 and TMPRSS2 in obesity. In silico and in vitro results suggest that the dysregulated lipogenesis and the subsequently high ACE2 expression in obese patients might be the mechanism underlying the increased risk for severe complications in those patients when infected by SARS-CoV-2

    ACE2 polymorphisms impact COVID-19 severity in obese patients

    Get PDF
    A strong association between obesity and COVID-19 complications and a lack of prognostic factors that explain the unpredictable severity among these patients still exist despite the various vaccination programs. The expression of angiotensin converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is enhanced in obese individuals. The occurrence of frequent genetic single nucleotide polymorphisms (SNPs) in ACE2 is suggested to increase COVID-19 severity. Accordingly, we hypothesize that obesity-associated ACE2 polymorphisms increase the severity of COVID-19. In this study, we profiled eight frequently reported ACE2 SNPs in a cohort of lean and obese COVID-19 patients (n = 82). We highlight the significant association of rs2285666, rs2048683, rs879922, and rs4240157 with increased severity in obese COVID-19 patients as compared to lean counterparts. These co-morbid-associated SNPs tend to positively correlate, hence proposing possible functional cooperation to ACE2 regulation. In obese COVID-19 patients, rs2285666, rs879922, and rs4240157 are significantly associated with increased blood nitrogen urea and creatinine levels. In conclusion, we highlight the contribution of ACE2 SNPs in enhancing COVID-19 severity in obese individuals. The results from this study provide a basis for further investigations required to shed light on the underlying mechanisms of COVID-19 associated SNPs in COVID-19 obese patients

    A pilot metagenomic study reveals that community derived mobile phones are reservoirs of viable pathogenic microbes

    Get PDF
    There is increasing attention focussed on the risks associated with mobile phones possibly serving as ‘Trojan Horse’ fomites for microbial transmission in healthcare settings. However, little is reported on the presence of microbes on community derived mobile phones which in 2021, numbered in the billions in circulation with majority being used on a daily basis. Identify viable microbial organisms swabbed from smartphones on a university campus. Entire surfaces of 5 mobile phones were swabbed and examined for their microbial content using pre-agar-based growths followed by downstream DNA metagenomic next-generation sequencing analysis. All phones were contaminated with viable microbes. 173 bacteria, 8 fungi, 8 protists, 53 bacteriophages, 317 virulence factor genes and 41 distinct antibiotic resistant genes were identified. While this research represents a pilot study, the snapshot metagenomic analysis of samples collected from the surface of mobile phones has revealed the presence of a large population of viable microbes and an array of antimicrobial resistant factors. With billions of phones in circulation, these devices might be responsible for the rise of community acquired infections. These pilot results highlight the importance of public health authorities considering mobile phones as ‘Trojan Horse’ devices for microbial transmission and ensure appropriate decontamination campaigns are implemented

    Mobile phones as fomites for pathogenic microbes: A cross-sectional survey of perceptions and sanitization habits of health care workers in Dubai, United Arab Emirates

    Get PDF
    Backgrounds In 2022, smartphone use continues to expand with the number of smartphone subscriptions surpassing 6 billion and forecasted to grow to 7.5 billion by 2026. The necessity of these ‘high touch’ devices as essential tools in professional healthcare settings carries great risks of cross-contamination between mobile phones and hands. Current research emphasises mobile phones as fomites enhancing the risk of nosocomial disease dissemination as phone sanitisation is often overlooked. To assess and report via a large-scale E-survey the handling practices and the use of phones by healthcare workers. Methods A total of 377 healthcare workers (HCWs) participated in this study to fill in an E-survey online consisting of 14 questions (including categorical, ordinal, and numerical data). Analysis of categorical data used non-parametric techniques such as Pearson's chi-squared test. Results During an 8-h shift, 92.8% (n/N = 350/377) use their phone at work with 84.6% (n/N = 319/377) considering mobile phones as an essential tool for their job. Almost all HCWs who participated in this survey believe their mobile phones could potentially harbour microorganisms (97.1%; n/N = 366/377). Fifty-seven respondents (15.1%) indicated that they use their phones while wearing gloves and 10.3% (n/N = 39/377) have never cleaned their phones. The majority of respondents (89.3%; n/N = 337/377) agreed that contaminated mobile phones could contribute to dissemination of SARS-CoV-2. Conclusion Mobile phone use is now almost universal and indispensable in healthcare. Medical staff believe mobile phones can act as fomites with a potential risk for dissemination of microbes including SARS-COV-2. There is an urgent call for the incorporation of mobile phone sanitisation in infection prevention protocol. Studies on the use of ultraviolet-C based phone sanitation devices in health care settings are needed

    Metagenomic sequencing and reverse transcriptase PCR reveal that mobile phones and environmental surfaces are reservoirs of Multidrug-Resistant superbugs and SARS-CoV-2

    Get PDF
    Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community
    • …
    corecore