4 research outputs found

    MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults

    No full text
    Brown adipose tissue (BAT) has been proposed as a target to treat obesity and metabolic disease. Currently,; 18; F-Fluordeoxyglucose positron emission tomography (FDG-PET) is the standard for BAT-imaging. MRI might be a promising alternative, as it is not associated with ionizing radiation, offers a high resolution, and allows to discriminate different types of soft tissue.; We sought to evaluate whether supraclavicular BAT (scBAT) volume, fat-fraction (FF), and relaxation rate (R2*) determined by MRI can predict its metabolic activity, which was assessed by measurement of cold-induced thermogenesis (CIT).; Prospective cohort study.; Twenty healthy volunteers (9 female, 11 male), aged 18-47 years, with a body mass index (BMI) of 18-30 kg/m; 2; .; Multiecho gradient MRI for water-fat separation was used on a 3T device to measure the FF and T; 2; * of BAT.; Prior to imaging, CIT was determined by measuring the difference in energy expenditure (EE) during warm conditions and after cold exposure. Volume, FF, and R2* of scBAT was assessed and compared with CIT. In 11 participants, two MRI sessions with and without cold exposure were performed and the dynamic changes in FF and R2* assessed.; Linear regression was used to evaluate the relation of MRI measurements and CIT. P-values below 0.05 were considered significant; data are given as mean ± SD.; R2* correlated positively with CIT (r = 0.64, R; 2; = 0.41 P = 0.0041). Volume and FF did not correlate significantly with CIT. After mild cold exposure EE increased significantly (P = 0.0002), with a mean CIT of 147 kcal/day. The mean volume of scBAT was 72.4 ± 38.4 ml, mean FF was 74.3 ± 5.8%, and the mean R2* (1/T; 2; *) was 33.5 ± 12.7 s; -1; .; R2* of human scBAT can be used to estimate CIT. FF of scBAT was not associated with CI

    Free Thyroxine Levels are Associated with Cold Induced Thermogenesis in Healthy Euthyroid Individuals

    Get PDF
    Thyroid hormone (TH) is an important regulator of mammalian metabolism and facilitates cold induced thermogenesis (CIT) in brown adipose tissue (BAT). Profound hypothyroidism or hyperthyroidism lead to alterations in BAT function and CIT. In euthyroid humans the inter-individual variation of thyroid hormones is relatively large. Therefore, we investigated whether levels of free thyroxine (T4) or free triiodothyronine (T3) are positively associated with CIT in euthyroid individuals. We performed an observational study in 79 healthy, euthyroid volunteers (mean age 25.6 years, mean BMI 23.0 kg · m-2). Resting energy expenditure (REE) was measured by indirect calorimetry during warm conditions (EEwarm) and after a mild cold stimulus of two hours (EEcold). CIT was calculated as the difference between EEcold and EEwarm. BAT activity was assessed by 18F-FDG-PET after a mild cold stimulus in a subset of 26 participants. EEcold and CIT were significantly related to levels of free T4 (R2 = 0.11, p=0.0025 and R2 = 0.13, p=0.0011, respectively) but not to free T3 and TSH. Cold induced BAT activity was also associated with levels of free T4 (R2 = 0.21, p=0.018). CIT was approximately fourfold higher in participants in the highest tertile of free T4 as compared to the lowest tertile. Additionally, free T4 was weakly, albeit significantly associated with outdoor temperature seven days prior to the respective study visit (R2 = 0.06, p=0.037). These finding suggests that variations in thyroid hormone levels within the euthyroid range are related to the capability to adapt to cool temperatures and affect energy balance. Keywords: brown adipose tissue; cold adaptation; cold induced thermogenesis; energy expenditure; thyroid hormone; thyroxine

    Relation of diet-induced thermogenesis to brown adipose tissue activity in healthy men

    Full text link
    Human brown adipose tissue (BAT) is a thermogenic tissue activated by the sympathetic nervous system in response to cold exposure. It contributes to energy expenditure (EE) and takes up glucose and lipids from the circulation. Studies in rodents suggest that BAT contributes to the transient rise in EE after food intake, so-called diet-induced thermogenesis (DIT). We investigated the relationship between human BAT activity and DIT in response to glucose intake in 17 healthy volunteers. We assessed DIT, cold-induced thermogenesis (CIT), and maximum BAT activity at three separate study visits within 2 wk. DIT was measured by indirect calorimetry during an oral glucose tolerance test. CIT was assessed as the difference in EE after cold exposure of 2-h duration as compared with warm conditions. Maximal activity of BAT was assessed by 18-F-fluoro-deoxyglucose (18F-FDG) 18F-FDG-PET/MRI after cold exposure and concomitant pharmacological stimulation with mirabegron. Seventeen healthy men (mean age = 23.4 yr, mean body mass index = 23.2 kg/m2) participated in the study. EE increased from 1,908 (±181) kcal/24 h to 2,128 (±277) kcal/24 h (P < 0.0001, +11.5%) after mild cold exposure. An oral glucose load increased EE from 1,911 (±165) kcal/24 h to 2,096 (±167) kcal/24 h at 60 min (P < 0.0001, +9.7%). The increase in EE in response to cold was significantly associated with BAT activity (R2 = 0.43, P = 0.004). However, DIT was not associated with BAT activity (R2 = 0.015, P = 0.64). DIT after an oral glucose load was not associated with stimulated 18F-FDG uptake into BAT, suggesting that DIT is independent from BAT activity in humans (Clinicaltrials.gov Registration No. NCT03189511).NEW & NOTEWORTHY Cold-induced thermogenesis (CIT) was related to BAT activity as determined by FDG-PET/MRI after stimulation of BAT. Diet-induced thermogenesis (DIT) was not related to stimulated BAT activity. Supraclavicular skin temperature was related to CIT but not to DIT. DIT in humans is probably not a function of BAT

    Effect of high-dose glucocorticoid treatment on human brown adipose tissue activity: a randomised, double-blinded, placebo-controlled cross-over trial in healthy men

    No full text
    Background Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans.Methods We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.gov NCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed.Findings Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments.Interpretation Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes.ISSN:2352-396
    corecore