3,408 research outputs found
Adaptive Subcarrier PSK Intensity Modulation in Free Space Optical Systems
We propose an adaptive transmission technique for free space optical (FSO)
systems, operating in atmospheric turbulence and employing subcarrier phase
shift keying (S-PSK) intensity modulation. Exploiting the constant envelope
characteristics of S-PSK, the proposed technique offers efficient utilization
of the FSO channel capacity by adapting the modulation order of S-PSK,
according to the instantaneous state of turbulence induced fading and a
pre-defined bit error rate (BER) requirement. Novel expressions for the
spectral efficiency and average BER of the proposed adaptive FSO system are
presented and performance investigations under various turbulence conditions
and target BER requirements are carried out. Numerical results indicate that
significant spectral efficiency gains are offered without increasing the
transmitted average optical power or sacrificing BER requirements, in
moderate-to-strong turbulence conditions. Furthermore, the proposed variable
rate transmission technique is applied to multiple input multiple output (MIMO)
FSO systems, providing additional improvement in the achieved spectral
efficiency as the number of the transmit and/or receive apertures increases.Comment: Submitted To IEEE Transactions On Communication
Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system
On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor
Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition
This paper studies joint beamforming and power control in a coordinated
multicell downlink system that serves multiple users per cell to maximize the
minimum weighted signal-to-interference-plus-noise ratio. The optimal solution
and distributed algorithm with geometrically fast convergence rate are derived
by employing the nonlinear Perron-Frobenius theory and the multicell network
duality. The iterative algorithm, though operating in a distributed manner,
still requires instantaneous power update within the coordinated cluster
through the backhaul. The backhaul information exchange and message passing may
become prohibitive with increasing number of transmit antennas and increasing
number of users. In order to derive asymptotically optimal solution, random
matrix theory is leveraged to design a distributed algorithm that only requires
statistical information. The advantage of our approach is that there is no
instantaneous power update through backhaul. Moreover, by using nonlinear
Perron-Frobenius theory and random matrix theory, an effective primal network
and an effective dual network are proposed to characterize and interpret the
asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on
Wireless Communications are correcte
Fast directional spatially localized spherical harmonic transform
We propose a transform for signals defined on the sphere that reveals their
localized directional content in the spatio-spectral domain when used in
conjunction with an asymmetric window function. We call this transform the
directional spatially localized spherical harmonic transform (directional
SLSHT) which extends the SLSHT from the literature whose usefulness is limited
to symmetric windows. We present an inversion relation to synthesize the
original signal from its directional-SLSHT distribution for an arbitrary window
function. As an example of an asymmetric window, the most concentrated
band-limited eigenfunction in an elliptical region on the sphere is proposed
for directional spatio-spectral analysis and its effectiveness is illustrated
on the synthetic and Mars topographic data-sets. Finally, since such typical
data-sets on the sphere are of considerable size and the directional SLSHT is
intrinsically computationally demanding depending on the band-limits of the
signal and window, a fast algorithm for the efficient computation of the
transform is developed. The floating point precision numerical accuracy of the
fast algorithm is demonstrated and a full numerical complexity analysis is
presented.Comment: 12 pages, 5 figure
Electrodynamics of an omega-band as deduced from optical and magnetometer data
We investigate an omega-band event that took place above northern Scandinavia
around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based
magnetometer, optical and riometer measurements together with satellite based
optical images. The optical and riometer data are used to estimate the
ionospheric Hall and Pedersen conductances, while ionospheric equivalent
currents are obtained from the magnetometer measurements. These data sets are
used as input in a local KRM calculation, which gives the ionospheric
potential electric field as output, thus giving us a complete picture of the
ionospheric electrodynamic state during the omega-band event.
<br><br>
The overall structure of the electric field and field-aligned current (FAC)
provided by the local KRM method are in good agreement with previous studies.
Also the <I><B>E</B></I>×<I><B>B</B></I> drift velocity calculated from the local
KRM solution is in good qualitative agreement with the plasma velocity
measured by the Finnish CUTLASS radar, giving further support for the new
local KRM method. The high-resolution conductance estimates allow us to
discern the detailed structure of the omega-band current system. The highest
Hall and Pedersen conductances, ~50 and ~25 S, respectively, are
found at the edges of the bright auroral tongue. Inside the tongue,
conductances are somewhat smaller, but still significantly higher than
typical background values. The electric field shows a converging pattern
around the tongues, and the field strength drops from ~40 mV/m found at
optically dark regions to ~10 mV/m inside the areas of enhanced
conductivity. Downward FAC flow in the dark regions, while upward currents
flow inside the auroral tongue. Additionally, sharp conductance gradients at
the edge of an auroral tongue are associated with narrow strips of intense
FACs, so that a strip of downward current flows at the eastern (leading) edge
and a similar strip of upward current is present at the western (trailing)
edge. The Joule heating follows the electric field pattern, so that it is
diminished inside the bright auroral tongue
An update on informed consent and the effect on the clinical practice of those working with people with a learning disability
In people with learning disability who have capacity under the Mental Capacity Act 2005 health professionals need to ensure that, when they are giving consent to treatment with medication, the consent is truly ‘informed’. The judgment of Montgomery v Lanarkshire Health Board [2015] and the Accessible Information Standard (NHS England 2016) seek to clarify this position which affects learning disability nurses as well as other healthcare professionals. This article examines how the law affects the way information is provided to service users. For people without capacity ‘Best Interests’ will continue to be applied
Customizing kernel functions for SVM-based hyperspectral image classification
Previous research applying kernel methods such as support vector machines (SVMs) to hyperspectral image classification has achieved performance competitive with the best available algorithms. However, few efforts have been made to extend SVMs to cover the specific requirements of hyperspectral image classification, for example, by building tailor-made kernels. Observation of real-life spectral imagery from the AVIRIS hyperspectral sensor shows that the useful information for classification is not equally distributed across bands, which provides potential to enhance the SVM's performance through exploring different kernel functions. Spectrally weighted kernels are, therefore, proposed, and a set of particular weights is chosen by either optimizing an estimate of generalization error or evaluating each band's utility level. To assess the effectiveness of the proposed method, experiments are carried out on the publicly available 92AV3C dataset collected from the 220-dimensional AVIRIS hyperspectral sensor. Results indicate that the method is generally effective in improving performance: spectral weighting based on learning weights by gradient descent is found to be slightly better than an alternative method based on estimating ";relevance"; between band information and ground trut
An Energy and Performance Exploration of Network-on-Chip Architectures
In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs
- …