173 research outputs found

    Optophysiological characterisation of inner retina responses with high-resolution optical coherence tomography

    Get PDF
    Low coherence laser interferometry has revolutionised quantitative biomedical imaging of optically transparent structures at cellular resolutions. We report the first optical recording of neuronal excitation at cellular resolution in the inner retina by quantifying optically recorded stimulus-evoked responses from the retinal ganglion cell layer and comparing them with an electrophysiological standard. We imaged anaesthetised paralysed tree shrews, gated image acquisition, and used numerical filters to eliminate noise arising from retinal movements during respiratory and cardiac cycles. We observed increases in contrast variability in the retinal ganglion cell layer and nerve fibre layer with flash stimuli and gratings. Regions of interest were subdivided into three-dimensional patches (up to 5-15μm in diameter) based on response similarity. We hypothesise that these patches correspond to individual cells, or segments of blood vessels within the inner retina. We observed a close correlation between the patch optical responses and mean electrical activity of afferent visual neurons. While our data suggest that optical imaging of retinal activity is possible with high resolution OCT, the technical challenges are not trivial

    FULFIL Trial: Once-Daily Triple Therapy in Patients with Chronic Obstructive Pulmonary Disease

    Get PDF
    RATIONALE: Randomized data comparing triple therapy with dual inhaled corticosteroid (ICS)/long-acting β2-agonist (LABA) therapy in patients with chronic obstructive pulmonary disease (COPD) are limited. OBJECTIVES: We compared the effects of once-daily triple therapy on lung function and health-related quality of life with twice-daily ICS/LABA therapy. METHODS: FULFIL was a randomized, double-blind, double-dummy study comparing 24 weeks of once-daily triple therapy (fluticasone furoate/umeclidinium/vilanterol 100 μg/62.5 μg/25 μg; ELLIPTA(®) inhaler) with twice-daily ICS/LABA therapy (budesonide/formoterol 400 μg/12 μg; Turbuhaler(®)). A patient subgroup remained on blinded treatment for up to 52 weeks. Co-primary endpoints were change from baseline in trough forced expiratory volume in 1 second (FEV1) and in St George's Respiratory Questionnaire (SGRQ) Total score, at Week 24. MEASUREMENTS AND MAIN RESULTS: In the intent-to-treat population (N = 1,810) at Week 24 for triple therapy (n = 911) and ICS/LABA therapy (n = 899): mean change from baseline in FEV1 was 142 mL (95% confidence interval [CI], 126,158) and -29 mL (95% CI, -46,-13), respectively; mean change from baseline SGRQ was -6.6 units (95% CI, -7.4,-5.7) and -4.3 units (95% CI, -5.2,-3.4), respectively. For both endpoints, the between-group differences were statistically significant (P < 0.001). There was a statistically significant reduction in moderate/severe exacerbation rate with triple versus ICS/LABA therapy (35% reduction, 95% CI, 14,51; P = 0.002). The safety profile of triple therapy reflected the known profiles of the components. CONCLUSIONS: These results support the benefits of single inhaler triple therapy compared with ICS/LABA therapy, in patients with advanced COPD. Clinical trial registration available at www.clinicaltrials.gov, ID NCT02345161

    A novel system for the classification of diseased retinal ganglion cells

    Get PDF
    Retinal ganglion cell (RGC) dendritic atrophy is an early feature of many forms of retinal degeneration, providing a challenge to RGC classification. The characterization of these changes is complicated by the possibility that selective labeling of any particular class can confound the estimation of dendritic remodeling. To address this issue we have developed a novel, robust, and quantitative RGC classification based on proximal dendritic features which are resistant to early degeneration. RGCs were labeled through the ballistic delivery of DiO and DiI coated tungsten particles to whole retinal explants of 20 adult Brown Norway rats. RGCs were grouped according to the Sun classification system. A comprehensive set of primary and secondary dendrite features were quantified and a new classification model derived using principal component (PCA) and discriminant analyses, to estimate the likelihood that a cell belonged to any given class. One-hundred and thirty one imaged RGCs were analyzed; according to the Sun classification, 24% (n = 31) were RGCA, 29% (n = 38) RGCB, 32% (n = 42) RGCC, and 15% (n = 20) RGCD. PCA gave a 3 component solution, separating RGCs based on descriptors of soma size and primary dendrite thickness, proximal dendritic field size and dendritic tree asymmetry. The new variables correctly classified 73.3% (n = 74) of RGCs from a training sample and 63.3% (n = 19) from a hold out sample indicating an effective model. Soma and proximal dendritic tree morphological features provide a useful surrogate measurement for the classification of RGCs in disease. While a definitive classification is not possible in every case, the technique provides a useful safeguard against sample bias where the normal criteria for cell classification may not be reliable

    Digestion of the glycosaminoglycan extracellular matrix by chondroitinase ABC supports retinal ganglion cell dendritic preservation in a rodent model of experimental glaucoma

    Get PDF
    Retinal ganglion cell dendritic atrophy is an early feature of glaucoma, and the recovery of retinal ganglion cell dendrites is a viable option for vision improvement in glaucoma. Retinal ganglion cell neurites are surrounded by a specialised glycosaminoglycan extracellular matrix which inhibits dendritic plasticity. Since digestion of the extracellular matrix by chondroitinase ABC has been reported to have neuro-regenerative and neuro-plastic effects within the central nervous system, we explored its potential for dendritic recovery in a rat model of ocular hypertension. Chondroitinase ABC was administrated intravitreally 1 week after ocular hypertension (a time point where dendritic atrophy has already occurred). Retinal ganglion cell dendritic morphology was unaffected by chondroitinase ABC in normal retina. In ocular hypertensive eyes retinal ganglion cells showed significantly decreased dendritic length and area under the Sholl curve with atrophy confined to higher order dendrites. These changes were not observed in chondroitinase ABC injected eyes despite similar total retinal ganglion cell loss (i.e. dendritic protection of surviving retinal ganglion cells). These data suggest that glycosaminoglycan digestion could have a therapeutic role in mitigating the effects of elevated pressure on retinal ganglion cell dendritic structure in glaucoma

    A novel system for the classification of diseased retinal ganglion cells

    Get PDF
    Retinal ganglion cell (RGC) dendritic atrophy is an early feature of many forms of retinal degeneration, providing a challenge to RGC classification. The characterization of these changes is complicated by the possibility that selective labeling of any particular class can confound the estimation of dendritic remodeling. To address this issue we have developed a novel, robust, and quantitative RGC classification based on proximal dendritic features which are resistant to early degeneration. RGCs were labeled through the ballistic delivery of DiO and DiI coated tungsten particles to whole retinal explants of 20 adult Brown Norway rats. RGCs were grouped according to the Sun classification system. A comprehensive set of primary and secondary dendrite features were quantified and a new classification model derived using principal component (PCA) and discriminant analyses, to estimate the likelihood that a cell belonged to any given class. One-hundred and thirty one imaged RGCs were analyzed; according to the Sun classification, 24% (n = 31) were RGCA, 29% (n = 38) RGCB, 32% (n = 42) RGCC, and 15% (n = 20) RGCD. PCA gave a 3 component solution, separating RGCs based on descriptors of soma size and primary dendrite thickness, proximal dendritic field size and dendritic tree asymmetry. The new variables correctly classified 73.3% (n = 74) of RGCs from a training sample and 63.3% (n = 19) from a hold out sample indicating an effective model. Soma and proximal dendritic tree morphological features provide a useful surrogate measurement for the classification of RGCs in disease. While a definitive classification is not possible in every case, the technique provides a useful safeguard against sample bias where the normal criteria for cell classification may not be reliable

    Diet matters, particularly in pregnancy – Results from MoBa studies of maternal diet and pregnancy outcomes

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Awareness that maternal diet may influence the outcome of pregnancy as well as the long-term health of mother and child has increased in recent years. A new food frequency questionnaire (FFQ) was developed and validated specifically for the Norwegian Mother and Child Cohort Study (MoBa). The MoBa FFQ is a semi-quantitative tool which covers the average intake of food, beverages and dietary supplements during the first 4 to 5 months of pregnancy. It includes questions about intakes of 255 foods and dishes and was used from 2002 onwards. Data assessed by the MoBa FFQ is available for 87,700 pregnancies. Numerous sub-studies have examined associations between dietary factors and health outcomes in MoBa. The aim of this paper is to summarize the results from 19 studies of maternal diet and pregnancy outcomes, which is the complete collection of studies based on the MoBa FFQ and published before September 2014. The overall research question is whether maternal diet – from single substances to dietary patterns – matters for pregnancy outcome. The pregnancy outcomes studied till now include birth size measures, infants being small and large for gestational age, pregnancy duration, preterm delivery, preeclampsia, as well as maternal gestational weight gain and postpartum weight retention. As a whole, the results from these studies corroborate that the current dietary recommendations to pregnant women are sound and that maternal diet during pregnancy is likely to contribute to reduce the risk of pregnancy complications including preterm birth, preeclampsia, and reduced foetal growth. The results provide supporting evidence for recommending pregnant women to consume vegetables, fruit, whole grain, fish, dairy, and water regularly and lower the intake of sugar sweetened beverages, processed meat products and salty snacks. The results showing negative impact of even low levels of environmental contaminants support the precautionary advice on consumption of foods containing these. New findings are that particularly lean fish explained the positive association between seafood intake and foetal growth, and the indications of a protective effect of probiotic and antimicrobial foods on pregnancy outcomes. This points to the importance of diet composition for a healthy gut flora and the body’s immune response. Although these studies are observational and cannot infer causality, the results identify diet as an important modifiable lifestyle factor, suggesting that healthy eating, defined as following the official recommendations, is particularly important in pregnanc
    • …
    corecore