503 research outputs found

    Teacher Competence

    No full text

    Observation of the Bc+J/ψπ+π0B_c^+ \to J/\psi \pi^+ \pi^0 decay

    No full text
    The first observation of the Bc+J/ψπ+π0B_c^+ \to J/\psi \pi^+ \pi^0 decay is reported with high significance using proton-proton collision data, corresponding to an integrated luminosity of 9 fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV. The ratio of its branching fraction relative to the Bc+J/ψπ+B_c^+ \to J/\psi \pi^+ channel is measured to be B(Bc+J/ψπ+π0)B(Bc+J/ψπ+)=2.80±0.15±0.11±0.16, \frac{ {\cal{B}}_{( B_c^+ \to J/\psi \pi^+\pi^0 ) }} { {\cal{B}}_{( B_c^+ \to J/\psi \pi^+ ) }} = 2.80 \pm 0.15 \pm 0.11 \pm 0.16 \,, where the first uncertainty is statistical, the second systematic and the third related to imprecise knowledge of the branching fractions for B+J/ψK+B^+ \to J/\psi K^{*+} and B+J/ψK+B^+ \to J/\psi K^+ decays, which are used to determine the π0\pi^0 detection efficiency. The π+π0\pi^+\pi^0 mass spectrum is found to be consistent with the dominance of an intermediate ρ+\rho^+ contribution in accordance with a model based on QCD factorisation.The first observation of the Bc+J/ψπ+π0 {B}_c^{+}\to J/\psi {\pi}^{+}{\pi}^0 decay is reported with high significance using proton-proton collision data, corresponding to an integrated luminosity of 9 fb1^{−1}, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV. The ratio of its branching fraction relative to the Bc+J/ψπ+ {B}_c^{+}\to J/\psi {\pi}^{+} channel is measured to beBBc+J/ψπ+π0BBc+J/ψπ+=2.80±0.15±0.11±0.16, \frac{{\mathcal{B}}_{B_c^{+}\to J/\psi {\pi}^{+}{\pi}^0}}{{\mathcal{B}}_{B_c^{+}\to J/\psi {\pi}^{+}}}=2.80\pm 0.15\pm 0.11\pm 0.16, where the first uncertainty is statistical, the second systematic and the third related to imprecise knowledge of the branching fractions for B+^{+} → J/ψK+^{*+} and Bc+J/ψπ+ {B}_c^{+}\to J/\psi {\pi}^{+} decays, which are used to determine the π0^{0} detection efficiency. The π+^{+}π0^{0} mass spectrum is found to be consistent with the dominance of an intermediate ρ+^{+} contribution in accordance with a model based on QCD factorisation.[graphic not available: see fulltext]The first observation of the Bc+J/ψπ+π0B_c^+ \to J/\psi \pi^+ \pi^0 decay is reported with high significance using proton-proton collision data, corresponding to an integrated luminosity of 9fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV. The ratio of its branching fraction relative to the Bc+J/ψπ+B_c^+ \to J/\psi \pi^+ channel is measured to be B(Bc+J/ψπ+π0)B(Bc+J/ψπ+)=2.80±0.15±0.11±0.16, \frac{ {\cal{B}}( B_c^+ \to J/\psi \pi^+\pi^0 ) } { {\cal{B}}( B_c^+ \to J/\psi \pi^+ ) } = 2.80 \pm 0.15 \pm 0.11 \pm 0.16 \,, where the first uncertainty is statistical, the second systematic and the third related to imprecise knowledge of the branching fractions for B+J/ψK+B^+ \to J/\psi K^{*+} and B+J/ψK+B^+ \to J/\psi K^+ decays, which are used to determine the π0\pi^0 detection efficiency. The π+π0\pi^+\pi^0 mass spectrum is found to be consistent with the dominance of an intermediate ρ+\rho^+ contribution in accordance with a model based on QCD factorisation

    Measurement of the Branching Fraction of B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} Decays

    No full text
    International audienceThe ratio of branching fractions between B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} and B+J/ψK+B^{+} \rightarrow J/\psi K^{*+} decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. The measured value is BB0J/ψπ0BB+J/ψK+=(1.153±0.053±0.048)×102\frac{\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}}}{\mathcal{B}_{B^{+} \rightarrow J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048 ) \times 10^{-2}, where the first uncertainty is statistical and the second is systematic. The branching fraction for B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} decays is determined using the branching fraction of the normalisation channel, resulting in BB0J/ψπ0=(1.670±0.077±0.069±0.095)×105\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5}, where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst) P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Study of Bc+χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays

    No full text
    International audienceA study of Bc+χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9fb1^{-1}. The decay Bc+χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the Bc+J/ψπ+B_c^+ \rightarrow J/\psi \pi^+ decay is measured to be BBc+χc2π+BBc+J/ψπ+=0.37±0.06±0.02±0.01, \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow J/\psi \pi^+}} = 0.37 \pm 0.06 \pm 0.02 \pm 0.01 , where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the χcJ/ψγ\chi_c \rightarrow J/\psi \gamma branching fraction. No significant Bc+χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ signal is observed and an upper limit for the relative branching fraction for the Bc+χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ and Bc+χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ decays of BBc+χc1π+BBc+χc2π+<0.49 \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c1} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} < 0.49 is set at the 90% confidence level

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s= \sqrt{s} = 5.02 TeV

    No full text
    The inclusive jet cross section is measured as a function of jet transverse momentum pT p_{\mathrm{T}} and rapidity y y . The measurement is performed using proton-proton collision data at s= \sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4pb1\,\text{pb}^{-1}. The jets are reconstructed with the anti-kT k_{\mathrm{T}} algorithm using a distance parameter of R= R= 0.4, within the rapidity interval y< |y| < 2, and across the kinematic range 0.06 <pT< < p_{\mathrm{T}} < 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS \alpha_\mathrm{S} .The inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}
    corecore