74 research outputs found

    3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats

    Get PDF
    3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis

    Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches

    Get PDF
    Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity

    Differential Effects of 3,5-Diiodo-L-Thyronine and 3,5,3'-Triiodo-L-Thyronine On Mitochondrial Respiratory Pathways in Liver from Hypothyroid Rats.

    Get PDF
    Both 3,5-diiodo-L-thyronine (3,5-T2) and 3,5,3'-triiodo-L-tyronine (T3) affect energy metabolism having mitochondria as a major target. However, the underlying mechanisms are poorly understood. Here, using a model of chemically induced hypothyroidism in male Wistar rats, we investigated the effect of administration of either 3,5-T2 or T3 on liver oxidative capacity through their influence on mitochondrial processes including: proton-leak across the mitochondrial inner membrane; complex I-, complex II- and glycerol-3-phosphate-linked respiratory pathways; respiratory complex abundance and activities as well as individual complex aggregation into supercomplexes. Background/Aims: Both 3,5-diiodo-L-thyronine (3,5-T2) and 3,5,3'-triiodo-L-tyronine (T3) affect energy metabolism having mitochondria as a major target. However, the underlying mechanisms are poorly understood. Here, using a model of chemically induced hypothyroidism in male Wistar rats, we investigated the effect of administration of either 3,5-T2 or T3 on liver oxidative capacity through their influence on mitochondrial processes including: proton-leak across the mitochondrial inner membrane; complex I-, complex II- and glycerol-3-phosphate-linked respiratory pathways; respiratory complex abundance and activities as well as individual complex aggregation into supercomplexes. Methods: Hypothyroidism was induced by propylthiouracil and iopanoic acid; 3,5-T2 and T3 were intraperitoneally administered at 25 and 15 μg/100 g BW for 1 week, respectively. Resulting alterations in mitochondrial function were studied by combining respirometry, Blue Native-PAGE followed by in-gel activity, and Western blot analyses. Results: Administration of 3,5-T2 and T3 to hypothyroid (hypo) rats enhanced mitochondrial respiration rate with only T3 effectively stimulating proton-leak (450% vs. Hypo). T3 significantly enhanced complex I (+145% vs. Hypo), complex II (+66% vs. Hypo), and glycerol-3 phosphate dehydrogenase (G3PDH)-linked oxygen consumptions (about 6- fold those obtained in Hypo), while 3,5-T2 administration selectively restored Euthyroid values of complex II- and increased G3PDH- linked respiratory pathways (+165% vs. Hypo). The mitochondrial abundance of all respiratory complexes and of G3PDH was increased by T3 administration whereas 3,5-T2 only increased complex V and G3PDH abundance. 3,5-T2 enhanced complex I and complex II in gel activities with less intensity than did T3, and T3 also enhanced the activity of all other respiratory complexes tested. In addition, only T3 enhanced individual respiratory component complex assembly into supercomplexes. Conclusions: The reported data highlight novel molecular mechanisms underlying the effect elicited by iodothyronine administration to hypothyroid rats on mitochondrial processes related to alteration in oxidative capacity in the liver. The differential effects elicited by the two iodothyronines indicate that 3,5-T2, by influencing the kinetic properties of specific mitochondrial respiratory pathways, would promote a rapid response of the organelle, while T3, by enhancing the abundance of respiratory chain component and favoring the organization of respiratory chain complex in supercomplexes, would induce a slower and prolonged response of the organelle

    Exercise with Energy Restriction as a Means of Losing Body Mass while Preserving Muscle Quality and Ameliorating Co-morbidities: Towards a Therapy for Obesity?

    Get PDF
    Exercise with Energy Restriction as a Means of Losing Body Mass while Preserving Muscle Quality and Ameliorating Co-morbidities: Towards a Therapy for Obesity? Antonia Giacco1*, Elena Silvestri1*, Rosalba Senese2, Federica Cioffi1, Arianna Cuomo2, Assunta Lombardi3, Maria Moreno1, Antonia Lanni2 and Pieter de Lange()2 1Dipartimento di Science e Tecnologie, Università degli Studi del Sannio, Benevento, Italy 2Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli," Caserta, Italy 3Dipartimento di Biologia, Università degli Studi di Napoli "Federico II," Napoli, Italy © The Authors Abstract Obesity and related co-morbidities are a major public health threat worldwide, and efforts to counteract obesity by means of physiological interventions are currently being explored and applied. Here we present an overview of the literature on the effect of dietary/exercise-based programs on loss of different components of body mass. We also discuss gain or lack of loss of lean mass in view of muscle quality maintenance, which is an important aspect to consider when employing weight-loss strategies to tackle obesity. By comparing results obtained in participants with mild to severe obesity with those obtained in lean participants, we highlight variations in the success of these interventions. Furthermore, we briefly address the observation that although certain interventions may not always affect body composition they can nevertheless ameliorate co-morbidities (insulin resistance, non-alcoholic fatty liver disease). Based on what is currently known, in this narrative review we include data from human and animal studies related to the process of unravelling the mechanisms underlying conservation of functional muscle mass

    Actin remodeling driven by circLIMA1: sperm cell as an intriguing cellular model

    Get PDF
    CircRNA cargo in spermatozoa (SPZ) participates in setting cell quality, in terms of morphology and motility. Cannabinoid receptor CB1 activity is correlated with a proper spermatogenesis and epididymal sperm maturation. Despite CB1 promotes endogenous skill to circularize mRNAs in SPZ, few notions are reported regarding the functional link between endocannabinoids and spermatic circRNA cargo. In CB1 knock-out male mice, we performed a complete dataset of spermatic circRNA content by microarray strategy. Differentially expressed (DE)-circRNAs, as a function of genotype, were identified. Within DE-circRNAs, we focused the attention on circLIMA1, as putative actin-cytoskeleton architecture regulator. The validation of circLIMA1 dependent-competitive endogenous RNA (ceRNA) network (ceRNET) in in vitro cell line confirmed its activity in the regulation of the cytoskeletal actin. Interestingly, a dynamic actin regulation in SPZ nuclei was found during their epididymal maturation. In this scenario, we showed for the first time an intriguing sperm nuclear actin remodeling, regulated via a ceRNET-independent pathway, consisting in the nuclear shuttling of circLIMA1-QKI interactome and downstream in Gelsolin regulation. In particular, the increased levels of circLIMA1 in CB1 knock-out SPZ, associated with an inefficient depolymerization of nuclear actin, specifically illustrate how endocannabinoids, by regulating circRNA cargo, may contribute to sperm morpho-cellular maturation

    Short-Term, Combined Fasting and Exercise Improves Body Composition in Healthy Males

    Get PDF
    Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline-follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (-3.9 ± 1.9 kg; p < .001) and fat mass (-3.3 ± 1.3 kg; p < .001). Average lean mass was lost (-0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of -3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of -2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (-0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state-related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass
    corecore