44 research outputs found

    Comparison of uterine and ovarian stromal blood flow in patients with polycystic ovarian syndrome

    Get PDF
    Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders. The aim of this study was to find the correlation between color Doppler ultrasound and serum tests as auxiliary diagnostic criteria in areas where there is no possibility of some tests. A total of 108 patients were enrolled. They were divided into three groups including patients with PCOS, patients with PCOA ultrasound, patients with ovaries and normal hormone tests. Transvaginal sonography was performed from three groups and the results were evaluated in gray scale. The volume of the ovary, the number of follicles and the placement of follicles were recorded using using Doppler spectrum of uterine artery and ovarian stroma. Their arterial resistance index was also calculated. In the next step, serum samples were evaluated to determine the level of LH, FSH, free testosterone, DHEAS and 17-OHP hormones in the early follicular phase. Gray scale ultrasonographic findings (volume and number of ovarian follicles) as well as LH values were higher in patients with PCOS than those in the other two groups. These results proved the reliability of using these factors in the prediction of PCOS. In this study, Doppler indexes did not correlate with the size of the ovaries, the number of ovarian follicles and the measured hormone levels. The findings of transvaginal ultrasound and investigating the relationship with clinical and laboratory outcomes, a more suitable pattern could be chosen for more accurate patient selection and, leading to timely treatment and reducing the complications of the disease. © 2019 The authors

    The relationship between serum vitamin D level and premenstrual syndrome in Iranian women

    Get PDF
    Background: Premenstrual syndrome (PMS) is among the most unfavorable problems in women in reproductive age; however its pathophysiology is still not fully confirmed. Vitamin D as an immunomodulator could prevent inflammatory state before and during menstruation. Objective: The aim was to investigate whether there is any relationship between serum vitamin D levels and PMS. Materials and Methods: In total, 82 women participate in this case-control study which was conducted in Shahid Akbar-abadi hospital from November 2013 to March 2015. Categorization was based on an Iranian version of the premenstrual symptoms screening tool (PSST). Levels of 25 hydroxy-vitamin D3 (25OHD) were determined by using 25-OH Vitamin D ELISA kit in luteal phase. Characteristics of participants and vitamin D levels were compared between two groups by using independent sample t-test. Results: Menarche age of women with PMS was significantly lower than normal women (p=0.04). Body mass index was not statistically different between groups. We observed a high rate of vitamin D deficiency and also its severe deficiency in both PMS and non-PMS groups. However, our study demonstrated no significant difference in the levels of serum 25OHD between the two groups. Conclusion: It seems there is no association between PMS and serum levels of vitamin D3; however, the high rate of vitamin D deficiency among young Iranian women emerges special health care considerations in this group. � 2016, Research and Clinical Center for Infertitlity. All rights reserved

    Effect of vitamin d3 on mitochondrial biogenesis in granulosa cells derived from polycystic ovary syndrome

    Get PDF
    Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder diagnosed by anovulation hyperandro-genism. Hyperandrogenism increases apoptosis, which will eventually disturb follicular growth in PCOS patients. Since mitochondria regulate apoptosis, they might be affected by high incidence of follicular atresia. This may cause infertility. Since vitamin D3 has been shown to improve the PCOS symptoms, the aim of study was to investigate the effects vitamin D3 on mtDNA copy number, mitochondrial biogenesis, and membrane integrity of granulosa cells in a PCOS-induced mouse model. Materials and Methods: In this experimental study, the PCOS mouse model was induced by dehydroepiandrosterone (DHEA). Granulosa cells after identification by follicle-stimulating hormone receptor (FSHR) were cultured in three groups: 1. granulosa cells treated with vitamin D3 (100 nM for 24 hours), 2. granulosa cells without any treatments, 3. Non-PCOS granulosa cells (control group). Mitochondrial biogenesis gene (TFAM) expression was compared between different groups using real-time PCR. mtDNA copy number was also investigated by qPCR. The mitochon-drial structure was evaluated by transmission electron microscopy (TEM). Hormonal levels were measured by an enzymelinked immunosorbent assay (ELISA) kit. Results: The numbers of pre-antral and antral follicles increased in PCOS group in comparison with the non-PCOS group. Mitochondrial biogenesis genes were downregulated in granulosa cells of PCOS mice when compared to the non-PCOS granulosa cells. However, treatment with vitamin D3 increased mtDNA expression levels of these genes compared to PCOS granulosa cells with no treatments. Most of the mitochondria in the PCOS group were spherical with almost no cristae. Our results showed that in the PCOS group treated with vitamin D3, the mtDNA copy number increased significantly in comparison to PCOS granulosa cells with no treatments. Conclusion: According to this study, we can conclude, vitamin D3 improves mitochondrial biogenesis and membrane integrity, mtDNA copy number in granulosa cells of PCOS mice which might improve follicular development and subsequently oocyte quality. © 2020, Royan Institute (ACECR). All rights reserved

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Results on cascade production in lead-lead interactions from the NA57 experiment

    Get PDF
    The NA57 experiment has been designed to study the production of strange and multi-strange particles in Pb-Pb and p-Be collisions at the CERN SPS. The predecessor experiment WA97 has measured an enhanced abundance of strange particles in Pb-Pb collisions relative to p-A reactions at 160 GeV/c per nucleon beam momentum. NA57 has extended the WA97 measurements to investigate the evolution of the strangeness enhancement pattern as a function of the beam energy and over a wider centrality range. In this paper, we report results on cascade production for about the 60% most central collisions at 160 GeV/c per nucleon

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A grid-based approach to water scarcity estimates for Eastern and Southern Africa

    No full text
    A novel approach is taken to the problem of estimating global water scarcity, using a realistic and consistent procedure applied across many countries. Water demands, surface flows and groundwater availability are estimated on a gridded basis, and various water availability indices are derived comparing the resource with the projected demand. Surface flows are estimated using a conceptual rainfall-runoff model linking climate to runoff and, in the major river basins, the runoff estimates for individual grid cells are accumulated to give estimates for the total flows at all points of interest. Groundwater availability is derived from hydrogeological maps based on estimates of the potential yield that can be expected from a borehole and the likely maximum borehole density. Estimates of potential groundwater recharge derived from the surface water model are also taken into account. Water demands are based on current and projected population and livestock numbers, and information on irrigation schemes and industrial water use. Results are presented for the application of the model to a region covering the whole of eastern and southern Africa. The main scenario considered includes the combined impact of climate change, population growth and improved living standards to the year 2050. The results for this scenario show that water scarcity is likely to increase in many countries in the region, with particular problems in the countries around Lake Victoria and in the southernmost parts of the pilot region

    Effect of Y-shaped fins on the performance of shell-and-tube thermal energy storage unit

    No full text
    Phase change materials (PCMs) are well known for their inherent poor thermal characteristics, which consequently results in limited thermal efficiency for thermal energy storage systems (TESS). The current work numerically attempts to improve the thermal efficiency of TESS by employing Y-shaped fins with nano-enhanced PCM (NePCM). The NePCM is contained inside the cylindrical TESS, while water, as heat transfer fluid (HTF), is pumped through inner pipes. Three different configurations of the TESS were studied and compared; case 1: the reference case (with no fins), case 2: with two Y-shaped fins attached to the tubes, and case 3: with four Y-shaped fins attached to the tubes. The finite element method is employed to discretize the system's governing equations. Besides the influence of the TESS configuration, the impact of HTF temperature (338 and 348 K) and the volume fraction of the nanoparticles (0–0.08) were also addressed. The evolution of temperature contours and liquid fraction of the three different configurations under the two different HTF temperatures are discussed and analyzed. The findings revealed that using nanoparticles with 8 vol% enhanced the thermal conductivity during melting by 19%. The melting process was accelerated by 87% when the HTF temperature was higher (348 K). Finally, TESS with four Y-shaped fins was found to be the most effective as it achieved a 48% melting time reduction compared to the base case (case 1)
    corecore