65 research outputs found

    First measurement of the helicity asymmetry E in eta photoproduction on the proton

    Get PDF
    Results are presented for the first measurement of the double-polarization helicity asymmetry E for the eta photoproduction reaction gamma p - \u3e eta p. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the Julich-Bonn model to examine the case for the existence of a narrow N* resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the Eobservable from that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances. (C) 2016 Published by Elsevier B.V

    First Measurement of the Helicity Asymmetry E in ƞ Photoproduction on the Proton

    Get PDF
    Results are presented for the first measurement of the double-polarization helicity asymmetry E for the ƞ photoproduction reaction ɣp -\u3e ηp. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the Jülich-Bonn model to examine the case for the existence of a narrow N* resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the Eobservable from that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances

    Predictive Process Monitoring Methods: Which One Suits Me Best?

    Full text link
    Predictive process monitoring has recently gained traction in academia and is maturing also in companies. However, with the growing body of research, it might be daunting for companies to navigate in this domain in order to find, provided certain data, what can be predicted and what methods to use. The main objective of this paper is developing a value-driven framework for classifying existing work on predictive process monitoring. This objective is achieved by systematically identifying, categorizing, and analyzing existing approaches for predictive process monitoring. The review is then used to develop a value-driven framework that can support organizations to navigate in the predictive process monitoring field and help them to find value and exploit the opportunities enabled by these analysis techniques

    XNAP: Making LSTM-based Next Activity Predictions Explainable by Using LRP

    Full text link
    Predictive business process monitoring (PBPM) is a class of techniques designed to predict behaviour, such as next activities, in running traces. PBPM techniques aim to improve process performance by providing predictions to process analysts, supporting them in their decision making. However, the PBPM techniques` limited predictive quality was considered as the essential obstacle for establishing such techniques in practice. With the use of deep neural networks (DNNs), the techniques` predictive quality could be improved for tasks like the next activity prediction. While DNNs achieve a promising predictive quality, they still lack comprehensibility due to their hierarchical approach of learning representations. Nevertheless, process analysts need to comprehend the cause of a prediction to identify intervention mechanisms that might affect the decision making to secure process performance. In this paper, we propose XNAP, the first explainable, DNN-based PBPM technique for the next activity prediction. XNAP integrates a layer-wise relevance propagation method from the field of explainable artificial intelligence to make predictions of a long short-term memory DNN explainable by providing relevance values for activities. We show the benefit of our approach through two real-life event logs

    First Results from The GlueX Experiment

    Get PDF
    The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of π0\pi^{0}, η\eta and ω\omega mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the ρ\rho has been observed.Comment: 8 pages, 6 figures, Invited contribution to the Hadron 2015 Conference, Newport News VA, September 201

    Высокочувствительное сканирование генных мутаций: зонды TaqMan как блокирующие агенты

    Get PDF
    DNA Melting Analysis is very effective in clinical DNA diagnostics: it is simple to perform, high throughput, labor-, time- and cost-effective and is implemented in the “closed tube” format minimizing the risk of samples cross-contamination. Although more sensitive than sequencing by Sanger (mutant allele detection limit is ~5 and ~15 % respectively), it, however, is inferior in this respect to some other, more laborious and expensive methods (in particular, ddPCR (digital droplet PCR)). Using the BRAF gene as a prototype, we developed the original version of the DNA melting analysis, based on the ability of TaqMan probes to hamper the primer extension reaction by Taq-polymerase. It is found that the weaker blocking effect on the mutant template, which is due to the mismatch in the probe-DNA heteroduplex, permits enriched amplification of the mutant allele and provides a significant (10-fold or more) increase in sensitivity of mutation scanning.Метод плавления ДНК весьма эффективен в клинической генодиагностике, прост в исполнении, производителен, экономичен и, кроме того, реализуется в «закрытом формате», сводящем к минимуму затраты времени, труда и риск перекрестного загрязнения образцов. Данный метод более чувствительный, чем секвенирование по Сэнгеру (предел обнаружения мутантных аллелей ~5 и ~15 % соответственно), однако уступает в этом отношении другим, более трудоемким и дорогим методам (в частности, капельной цифровой полимеразной цепной реакции (digital droplet PCR)). На гене BRAF (как прототипе) мы разработали оригинальный вариант метода плавления ДНК, основанный на способности зондов TaqMan затруднять движение Taq-полимеразы по матрице. Установлено, что эффект блокирования слабее выражен на мутантной матрице из-за присутствия в дуплексе зонд-ДНК неспаренного основания. Предложен протокол полимеразной цепной реакции, дискриминирующий амплификацию мутантных и нормальных аллелей и обеспечивающий существенное (10-кратное и более) повышение чувствительности мутационного сканирования
    corecore