18 research outputs found

    The total number and mass of SARS-CoV-2 virions in an infected person

    Get PDF
    Quantitatively describing the time course of the SARS-CoV-2 infection within an infected individual is important for understanding the current global pandemic and possible ways to combat it. Here we integrate the best current knowledge about the abundance of potential SARS-CoV-2 host cells and typical concentrations of virions in bodily fluids to estimate the total number and mass of SARS-CoV-2 virions in an infected person. We estimate that each infected person carries 109-1011 virions during peak infection, with a total mass of about 1 µg-0.1 mg, which curiously implies that all SARS-CoV-2 virions currently in the world have a mass of only 0.1-1 kg. Knowledge of the absolute number of virions in an infected individual can put into perspective parameters of the immune system response, minimal infectious doses and limits of detection in testing

    Inferring the differences in incubation-period and generation-interval distributions of the Delta and Omicron variants of SARS-CoV-2

    Get PDF
    Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection-for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we reanalyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4 d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8 to 4.5 d) for both variants but a shorter mean generation interval for the Omicron variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI: 3.7 to 4.0 d). The differences in estimated generation intervals may be driven by the "network effect"-higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant

    What fraction of cellular DNA turnover becomes cfDNA?

    No full text
    Cell-free DNA (cfDNA) tests use small amounts of DNA in the bloodstream as biomarkers. While it is thought that cfDNA is largely released by dying cells, the proportion of dying cells' DNA that reaches the bloodstream is unknown. Here, we integrate estimates of cellular turnover rates to calculate the expected amount of cfDNA. By comparing this to the actual amount of cell type-specific cfDNA, we estimate the proportion of DNA reaching plasma as cfDNA. We demonstrate that <10% of the DNA from dying cells is detectable in plasma, and the ratios of measured to expected cfDNA levels vary a thousand-fold among cell types, often reaching well below 0.1%. The analysis suggests that local clearance, presumably via phagocytosis, takes up most of the dying cells' DNA. Insights into the underlying mechanism may help to understand the physiological significance of cfDNA and improve the sensitivity of liquid biopsies

    Revised Estimates for the Number of Human and Bacteria Cells in the Body

    No full text
    <div><p>Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·10<sup>13</sup>. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·10<sup>13</sup> human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.</p></div

    Bounds for bacteria number in different organs, derived from bacterial concentrations and volume.

    No full text
    <p>Bounds for bacteria number in different organs, derived from bacterial concentrations and volume.</p

    Values of bacteria density in stool as reported in several past articles.

    No full text
    <p>Values of bacteria density in stool as reported in several past articles.</p

    Back of the envelope estimate of the number of cells in an adult human body based on a characteristic volume and mass.

    No full text
    <p>Back of the envelope estimate of the number of cells in an adult human body based on a characteristic volume and mass.</p
    corecore