19 research outputs found

    Modeling and emergence of flapping flight of butterfly based on experimental measurements

    Get PDF
    The objective of this paper is to clarify the principle of stabilization in flapping-of-wing flight of a butterfly, which is a rhythmic and cyclic motion. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. For the aerodynamic forces, a panel method is applied. Validity of the mathematical models is shown by an agreement of the numerical result with the measured data. Then, periodic orbits of flapping-of-wing flights are searched in order to fly the butterfly models. Almost periodic orbits are obtained, but the model in the searched flapping-of-wing flight is unstable. This research, then, studies how the wake-induced flow and the flexibly torsional wing’s effect on the flight stability. Numerical simulations demonstrate that both the wake-induced flow and the flexible torsion reduces the flight instability. Because the obtained periodic flapping-of-wing flight is unstable, a feedback control system is designed, and a stable flight is realized

    Distribution of Diffusion Coefficient and its Concentration Dependence

    Get PDF

    Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms

    Get PDF
    The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms

    The Mechanisms of Ozonolysis of Polybutadiene Rubber

    No full text

    Aerodynamic forces and vortical structures in flapping butterfly's forward flight

    Get PDF
    Forward flights of a bilaterally symmetrically flapping butterfly modeled as a four-link rigid-body system consisting of a thorax, an abdomen, and left and right wings are numerically simulated. The joint motions of the butterflies are adopted from experimental observations. Three kinds of the simulations, distinguished by ways to determine the position and attitude of the thorax, are carried out: a tethered simulation, a prescribed simulation, and free-flight simulations. The upward and streamwise forces as well as the wake structures in the tethered simulation, where the thorax of the butterfly is fixed, reasonably agree with those in the corresponding tethered experiment. In the prescribed simulation, where the thoracic trajectories as well as the joint angles are given by those observed in a free-flight experiment, it is confirmed that the butterfly can produce enough forces to achieve the flapping flights. Moreover, coherent vortical structures in the wake and those on the wings are identified. The generation of the aerodynamic forces due to the vortical structures are also clarified. In the free-flight simulation, where only the joint angles are given as periodic functions of time, it is found that the free flight is longitudinally unstable because the butterfly cannot maintain the attitude in a proper range. Focusing on the abdominal mass, which largely varies owing to feeding and metabolizing, we have shown that the abdominal motion plays an important role in periodic flights. The necessity of control of the thoracic attitude for periodic flights and maneuverability is also discussed

    Internal Energy Transfer to Secondary Ions in Electrospray Droplet Impact/Secondary Ion Mass Spectrometry

    No full text

    Effects of structural flexibility of wings in flapping flight of butterfly

    Get PDF
    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability

    Distribution of Diffusion Coefficient and its Concentration Dependence

    No full text
    corecore