463 research outputs found

    Arboreal twig-nesting ants form dominance hierarchies over nesting resources.

    Get PDF
    Interspecific dominance hierarchies have been widely reported across animal systems. High-ranking species are expected to monopolize more resources than low-ranking species via resource monopolization. In some ant species, dominance hierarchies have been used to explain species coexistence and community structure. However, it remains unclear whether or in what contexts dominance hierarchies occur in tropical ant communities. This study seeks to examine whether arboreal twig-nesting ants competing for nesting resources in a Mexican coffee agricultural ecosystem are arranged in a linear dominance hierarchy. We described the dominance relationships among 10 species of ants and measured the uncertainty and steepness of the inferred dominance hierarchy. We also assessed the orderliness of the hierarchy by considering species interactions at the network level. Based on the randomized Elo-rating method, we found that the twig-nesting ant species Myrmelachista mexicana ranked highest in the ranking, while Pseudomyrmex ejectus was ranked as the lowest in the hierarchy. Our results show that the hierarchy was intermediate in its steepness, suggesting that the probability of higher ranked species winning contests against lower ranked species was fairly high. Motif analysis and significant excess of triads further revealed that the species networks were largely transitive. This study highlights that some tropical arboreal ant communities organize into dominance hierarchies

    Journal of Pre-College Engineering Education Research (J-PEER) Annual Report from January 1, 2022, to December 31, 2022

    Get PDF
    In this annual report, we present our reflections on 2022 along with the Journal of Pre-College Engineering Education Research (JPEER) readership trends and authorship metrics. In 2022, J-PEER published two issues in volume 12 comprised of 17 articles. The second issue of the year included a special issue on the impact of COVID-19 on education, marking the impact that the pandemic had on pre-college engineering education

    Didáctica e possibilidades de divulgação do sítio paleontológico do Cretácico da Figueira da Foz (Portugal)

    Get PDF
    ABSTRACT: The sedimentary exposures and the palaeontological site of Figueira da Foz (Portugal) are located near the coastal town of the same name, in front of the Mondego river estuary, where a set of mid Cenomanian to lower Turonian (Upper Cretaceous) marine beds of the West Portuguese Carbonate Platform are recorded by the Costa d’Arnes Formation. The 65 meters thick of the stratigraphic succession holds several fossiliferous units with diverse ammonite species and other abundant benthic invertebrates with Tethyan affinities, quite accessible for outreach activities. This context allows to combine indoor and out-of school learning strategies along with diverse didactic methodologies, aiming to reach a meaningful learning by carrying out didactic activities at the site and other contemporary outcrops such as Tamajón (Spain). These initiatives will incentive positive Geoconservation attitudes towards Natural Heritage, by means of outreach and Geotouristic events at the Figueira da Foz site, and related museums and interpretation centres.RESUMO: Os afloramentos e o sítio paleontológico da Figueira da Foz (Portugal) localizam-se junto da cidade com o mesmo nome, em frente ao estuário do rio Mondego. Correspondem a uma sucessão de estratos marinhos do Cenomaniano médio a Turoniano inferior (Cretácico Superior) da Plataforma Carbonatada Ocidental Portuguesa, pertencente à Formação de Costa d’Arnes. Os 65 metros de espessura da sucessão estratigráfica contêm várias unidades fossilíferas com amonites e abundantes invertebrados bentónicos com afinidades tetisianas, bastante acessíveis para actividades de divulgação. Este contexto permite combinar estratégias de aprendizagem dentro e fora da escola, e diversas metodologias didácticas, para se alcançar uma aprendizagem significativa através da realização de actividades didácticas no geossítio e em outros afloramentos contemporâneos, como em Tamajón (Espanha). Estas iniciativas poderão motivar atitudes positivas de Geoconservação do Património Natural, se incluídas em eventos geoturísticos e de divulgação no geossítio da Figueira da Foz, em museus e em centros de interpretação.info:eu-repo/semantics/publishedVersio

    A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    Get PDF
    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields

    Evapotranspiration in the Nile Basin: Identifying Dynamics, Trends, and Drivers 2002-2011

    Get PDF
    Analysis of the relationship between evapotranspiration (ET) and its natural and anthropogenic drivers is critical in water-limited basins such as the Nile. The spatiotemporal relationships of ET with rainfall and vegetation dynamics in the Nile Basin during 2002–2011 were analyzed using satellite-derived data. Non-parametric statistics were used to quantify ET-rainfall interactions and trends across land cover types and subbasins. We found that 65% of the study area (2.5 million km2) showed significant (p \u3c 0.05) positive correlations between monthly ET and rainfall, whereas 7% showed significant negative correlations. As expected, positive ET-rainfall correlations were observed over natural vegetation, mixed croplands/natural vegetation, and croplands, with a few subbasin-specific exceptions. In particular, irrigated croplands, wetlands and some forests exhibited negative correlations. Trend tests revealed spatial clusters of statistically significant trends in ET (6% of study area was negative; 12% positive), vegetation greenness (24% negative; 12% positive) and rainfall (11% negative; 1% positive) during 2002–2011. The Nile Delta, Ethiopian highlands and central Uganda regions showed decline in ET while central parts of Sudan, South Sudan, southwestern Ethiopia and northeastern Uganda showed increases. Except for a decline in ET in central Uganda, the detected changes in ET (both positive and negative) were not associated with corresponding changes in rainfall. Detected declines in ET in the Nile delta and Ethiopian highlands were found to be attributable to anthropogenic land degradation, while the ET decline in central Uganda is likely caused by rainfall reduction

    Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    Get PDF
    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ datasets. In this study, we used 12 yr (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of the Gibe III dam using three different approaches – a historical approach, a rainfall based approach, and a statistical approach to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the Gibe III dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 1–2 m (95% confidence) compared to the lake level modeled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modeling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas along the Lake Turkana shoreline that are vulnerable to fluctuations in lake levels due to the Gibe III dam were also identified. This study demonstrates the effectiveness of using existing multi-source satellite data in a basic modeling framework to assess the potential hydrological impact of an upstream dam on a terminal downstream lake. The results obtained from this study could also be used to evaluate alternative dam-filling scenarios and assess the potential impact of the dam on Lake Turkana under different operational strategies
    • …
    corecore