71 research outputs found
Additive growth inhibitory effects of ibandronate and antiestrogens in estrogen receptor-positive breast cancer cell lines
INTRODUCTION: Bisphosphonates are inhibitors of osteoclast-mediated tumor-stimulated osteolysis, and they have become standard therapy for the management of bone metastases from breast cancer. These drugs can also directly induce growth inhibition and apoptosis of osteotropic cancer cells, including estrogen receptor-positive (ER+) breast cancer cells. METHODS: We examined the anti-proliferative properties of ibandronate on two ER+ breast cancer cell lines (MCF-7 and IBEP-2), and on one ER negative (ER-) cell line (MDA-MB-231). Experiments were performed in steroid-free medium to assess ER regulation and the effect of ibandronate in combination with estrogen or antiestrogens. RESULTS: Ibandronate inhibited cancer cell growth in a dose- and time-dependent manner (approximate IC(50): 10(-4 )M for MCF-7 and IBEP-2 cells; 3 × 10(-4 )M for MDA-MB-231 cells), partly through apoptosis induction. It completely abolished the mitogenic effect induced by 17β-estradiol in ER+ breast cancer cells, but affected neither ER regulation nor estrogen-induced progesterone receptor expression, as documented in MCF-7 cells. Moreover, ibandronate enhanced the growth inhibitory action of partial (4-hydroxytamoxifen) and pure (ICI 182,780, now called fluvestrant or Faslodex™) antiestrogens in estrogen-sensitive breast cancer cells. Combination analysis identified additive interactions between ibandronate and ER antagonists. CONCLUSION: These data constitute the first in vitro evidence for additive effects between ibandronate and antiestrogens, supporting their combined use for the treatment of bone metastases from breast cancer
The bisphosphonate zoledronic acid impairs membrane localisation and induces cytochrome c release in breast cancer cells
Bisphosphonates are well established in the management of cancer-induced bone disease. Recent studies have indicated that these compounds have direct inhibitory effects on cultured human breast cancer cells. Nitrogen-containing bisphosphonates including zoledronic acid have been shown to induce apoptosis associated with PARP cleavage and DNA fragmentation. The aim of this study was to identify the signalling pathways involved. Forced expression of the anti-apoptotic protein bcl-2 attenuated bisphosphonate-induced loss of cell viability and induction of DNA fragmentation in MDA-MB-231 cells. Zoledronic acid-mediated apoptosis was associated with a time and dose-related release of mitochondrial cytochrome c into the cytosol in two cell lines. Rescue of cells by preincubation with a caspase-3 selective inhibitor and demonstration of pro-caspase-3 cleavage products by immunoblotting suggests that at least one of the caspases activated in response to zoledronic acid treatment is caspase-3. In both MDA-MB-231 and MCF-7 breast cancer cells, zoledronic acid impaired membrane localisation of Ras indicating reduced prenylation of this protein. These observations demonstrate that zoledronic acid-mediated apoptosis is associated with cytochrome c release and consequent caspase activation. This process may be initiated by inhibition of the enzymes in the mevalonate pathway leading to impaired prenylation of key intracellular proteins including Ras
In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells
INTRODUCTION: Bisphosphonates are mostly used in the treatment of bone metastases. They have been shown to act synergistically with other chemotherapeutic agents. It is not known, however, whether similar synergistic effects exist with radiation on breast cancer cells. METHODS: Human MCF-7 breast cancer cells were treated with up to 100 μM zoledronic acid, were irradiated with up to 800 cGy or were exposed to combinations of both treatments to determine the antiproliferative effects of zoledronic acid and radiation. RESULTS: Zoledronic acid and radiation caused a dose-dependent and time-dependent decrease in cell viability (approximate 50% growth inhibition values were 48 μM and 20 μM for 24 hours and 72 hours, respectively, for zoledronic acid and 500 cGy for radiation). A synergistic cytotoxic effect of the combination of zoledronic acid and radiation was confirmed by isobologram analysis. CONCLUSION: These data constitute the first in vitro evidence for synergistic effects between zoledronic acid and radiation. This combination therapy might thus be expected to be more effective than either treatment alone in patients with metastatic breast carcinoma
Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells
BACKGROUND: Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor activities is related to interference with the mevalonate pathway. METHODS: We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol biosynthesis was determined by measuring the incorporation of (14)C mevalonate in cholesterol. RESULTS: ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 μM ZOL-induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor mevalonate. After 48 hours treatment of cells with 20 μM ZOL, geranyl-geranylation of Rap1A was abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-geranyl transferase inhibitor, treatment of PNT1-A cells with 20 μM ZOL prevented the LPA-induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90% of this biosynthesis was rescued. CONCLUSION: Although zoledronic acid is currently the most efficient bisphosphonate in metastatic prostate cancer management, its mechanism of action in prostatic cells remains unclear. We suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological actitivity is directed against protein Geranylgeranylation
Anti-tumor effect of bisphosphonate (YM529) on non-small cell lung cancer cell lines
BACKGROUND: YM529 is a newly developed nitrogen-containing bisphosphonate (BP) classified as a third-generation BP that shows a 100-fold greater potency against bone resorption than pamidronate, a second-generation BP. This agent is, therefore expected to be extremely useful clinically for the treatment of osteoporosis and hypercalcemia. Recently, YM529 as well as other third-generation BPs have also been shown to exert anti-tumor effects against various types of cancer cells both in vitro or/and in vivo. In this study, we investigate the anti-tumor effect of YM529 on non-small cell lung cancer (NSCLC). METHODS: Direct anti-tumor effect of YM529 against 8 NSCLC cell lines (adenocarcinoma: H23, H1299, NCI-H1819, NCI-H2009, H44, A549, adenosquamous cell carcinoma: NCI-H125, squamous cell carcinoma: NCI-H157) were measured by MTS assay and calculated inhibition concentration 50 % (IC(50)) values. YM529 induced apoptosis of NCI-H1819 was examined by DNA fragmentation of 2 % agarose gel electrophoresis and flowcytometric analysis (sub-G(1 )method). We examined where YM529 given effect to apoptosis of NSCLC cells in signaling pathway of the mevalonate pathway by western blotting analysis. RESULTS: We found that there was direct anti-tumor effect of YM529 on 8 NSCLC cell lines in a dose-dependent manner and their IC(50 )values were 2.1 to 7.9 μM and YM529 induced apoptosis and G(1 )arrest cell cycle with dose-dependent manner and YM529 caused down regulation of phospholyration of ERK1/2 in signaling pathways of NSCLC cell line (NCI-H1819). CONCLUSION: Our study demonstrate that YM529 showed direct anti-tumor effect on NSCLC cell lines in vitro, which supports the possibility that third-generation BPs including YM529 can be one of therapeutic options for NSCLC
The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro
Pamidronate belongs to the class of nitrogen-containing bisphosphonates that are potent inhibitors of bone resorption frequently used for the treatment of osteoporosis and cancer-induced osteolysis. The inhibition of osteoclasts’ growth has been suggested as the main mechanism of the inhibitory effect of pamidronate on bone metastases. Recent findings indicated that bisphosphonates also have a direct apoptotic effect on other types of tumour cells. Nitrogen-containing bisphosphonates were shown to inhibit farnesyl diphosphate synthase, thus blocking the synthesis of higher isoprenoids. By this mechanism they inactivate monomeric G-proteins of the Ras and Rho families for which prenylation is a functional requirement. On the background of the known key role of G-proteins in tumorigenesis, we investigated a possible beneficial use of pamidronate in the treatment of malignant melanoma. Our results indicate that pamidronate inhibits the cell growth and induces apoptosis in human melanoma cells in vitro. Susceptibility to pamidronate did not correlate to CD95 ligand sensitivity or p53 mutational status. Furthermore it is interesting to note that overexpression of bcl-2 did not abolish pamidronate-induced apoptosis. These data suggests that pamidronate has a direct anti-tumour effect on malignant melanoma cells, independently of the Bax/Bcl-2 level
- …