7 research outputs found
Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tract (PPT) containing RNA
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene
DNA methylation associated with polycomb repression in retinoic acid receptor β silencing
International audienceRetinoic acid receptor β 2 (RARβ2) is a tumor suppressor gene whose loss of expression is recurrent in prostate cancers. Here we studied the epigenetic mechanisms leading to its stable silencing. First, we characterized all RARβ isoforms in 6 human tumor cell lines (prostate DU145, LNCaP, PC3, lung A549, breast Hs578T, and colon HCT116) by RT-PCR and Western blot. We excluded loss of heterozygosity (2D-FISH) and loss of RARa expression, an upstream regulator, as origin of RARβ2 silencing. All data concluded to an epigenetic silencing. In agreement, a DNA methylation inhibitor restored its expression. Second RARβ2 loss of expression was found associated with different epigenetic profiles in LNCaP and DU145 cells. According to bisulfite sequencing and ChIP analysis, we observed heavy methylation (97%) of the RARβ2 promoter with repressive histone mark H3K9me3 in LNCaP. While DNA methylation and polycomb repression are described to be mutually exclusive at CpG-rich promoters, we observed that in DU145, moderate DNA methylation (36%) and H3K9me3 mark were present concomitantly with H3K27me3, a signature of polycomb repression. In summary, we provide new insights on how the RARβ2 promoter is silenced, reveal the existence of two distinct repressive chromatin profiles at the same locus, and support a polycomb-mediated epigenetic repression process in prostate cancer