51 research outputs found

    Cytokine Induction by Influenza Virus: A Possible Correlation to Pathogenicity

    Get PDF

    Therapeutic Enhancement of Protective Immunity during Experimental Leishmaniasis

    Get PDF
    Leishmaniasis is an infectious disease that causes a large burden of morbidity and mortality in the tropics. Caused by protozoan parasites of the genus Leishmania that are transmitted by sandflies, leishmaniasis causes a wide spectrum of human disease. The severe end of the spectrum, visceral leishmaniasis, causes an annual mortality of approximately 50,000, largely in India and Sudan. Available therapies for leishmaniasis are problematic due to emerging drug resistance, toxicity and/or the need for lengthy courses of treatment. There is thus an urgent need for novel therapeutic approaches to this neglected tropical disease. To address this problem, the authors examined whether a commercially available drug developed for cancer therapy (Ontak), reported to have immunological activity of relevance to the immunobiology of Leishmania infection, exhibited efficacy in mouse models of leishmaniasis. The study found therapeutic efficacy for the drug alone in these models, as well as additive therapeutic efficacy in combination with standard antimicrobial therapy. Rational reinvestigation of the efficacy of already approved drugs in experimental models of neglected tropical diseases has promise in providing needed new candidates to the drug discovery pipeline

    IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn2+ that Promotes Pathogen Persistence in Macrophages

    Get PDF
    SummaryAlternative activation of macrophages promotes wound healing but weakens antimicrobial defenses against intracellular pathogens. The mechanisms that suppress macrophage function to create a favorable environment for pathogen growth remain elusive. We show that interleukin (IL)-4 triggers a metallothionein 3 (MT3)- and Zn exporter SLC30A4-dependent increase in the labile Zn2+ stores in macrophages and that intracellular pathogens can exploit this increase in Zn to survive. IL-4 regulates this pathway by shuttling extracellular Zn into macrophages and by activating cathepsins that act on MT3 to release bound Zn. We show that IL-4 can modulate Zn homeostasis in both human monocytes and mice. In vivo, MT3 can repress macrophage function in an M2-polarizing environment to promote pathogen persistence. Thus, MT3 and SLC30A4 dictate the size of the labile Zn2+ pool and promote the survival of a prototypical intracellular pathogen in M2 macrophages

    Thermoneutrality alters gastrointestinal antigen passage patterning and predisposes to oral antigen sensitization in mice

    Get PDF
    Food allergy is an emerging epidemic, and the underlying mechanisms are not well defined partly due to the lack of robust adjuvant free experimental models of dietary antigen sensitization. As housing mice at thermoneutrality (Tn) - the temperature of metabolic homeostasis (26-30°C) - has been shown to improve modeling various human diseases involved in inflammation, we tested the impact of Tn housing on an experimental model of food sensitization. Here we demonstrate that WT BALB/c mice housed under standard temperature (18-20°C, Ts) conditions translocated the luminal antigens in the small intestine (SI) across the epitheliu

    Thrombin promotes diet-induced obesity through fibrin-driven inflammation

    Get PDF
    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients

    IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice

    Get PDF
    Inflammation plays a central pathogenic role in the pernicious metabolic and end-organ sequelae of obesity. Among these sequelae, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the developed world. The twinned observations that obesity is associated with increased activation of the interleukin (IL)-17 axis and that this axis can regulate liver damage in diverse contexts prompted us to address the role of IL-17RA signaling in the progression of NAFLD. We further examined whether microbe-driven IL-17A regulated NAFLD development and progression. We show here that IL-17RA−/− mice respond to high-fat diet stress with significantly greater weight gain, visceral adiposity, and hepatic steatosis than wild-type controls. However, obesity-driven lipid accumulation was uncoupled from its end-organ consequences in IL-17RA−/− mice, which exhibited decreased steatohepatitis, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase enzyme expression, and hepatocellular damage. Neutralization of IL-17A significantly reduced obesity-driven hepatocellular damage in wild-type mice. Further, colonization of mice with segmented filamentous bacteria (SFB), a commensal that induces IL-17A production, exacerbated obesity-induced hepatocellular damage. In contrast, SFB depletion protected from obesity-induced hepatocellular damage. Conclusion: These data indicate that obesity-driven activation of the IL-17 axis is central to the development and progression of NAFLD to steatohepatitis and identify the IL-17 pathway as a novel therapeutic target in this condition. (Hepatology 2014;59:1830–1839

    Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice

    Get PDF
    Alterations in the gut microbiota have been proposed to modify the development and maintenance of obesity and its sequelae. Definition of underlying mechanisms has lagged, although the ability of commensal gut microbes to drive pathways involved in inflammation and metabolism has generated compelling, testable hypotheses. We studied C57BL/6 mice from two vendors that differ in their obesogenic response and in their colonization by specific members of the gut microbiota having well-described roles in regulating gut immune responses. We confirmed the presence of robust differences in weight gain in mice from these different vendors during high fat diet stress. However, neither specific, highly divergent members of the gut microbiota (Lactobacillus murinus, segmented filamentous bacteria) nor the horizontally transmissible gut microbiota were found to be responsible. Constitutive differences in locomotor activity were observed, however. These data underscore the importance of selecting appropriate controls in this widely used model of human obesity

    IL-10–producing Tfh cells accumulate with age and link inflammation with age-related immune suppression

    Get PDF
    Aging results in profound immune dysfunction, resulting in the decline of vaccine responsiveness previously attributed to irreversible defects in the immune system. In addition to increased interleukin-6 (IL-6), we found aged mice exhibit increased systemic IL-10 that requires forkhead box P3–negative (FoxP3−), but not FoxP3+, CD4+T cells. Most IL-10–producing cells manifested a T follicular helper (Tfh) phenotype and required the Tfh cytokines IL-6 and IL-21 for their accrual, so we refer to them as Tfh10 cells. IL-21 was also required to maintain normal serum levels of IL-6 and IL-10. Notably, antigen-specific Tfh10 cells arose after immunization of aged mice, and neutralization of IL-10 receptor signaling significantly restored Tfh-dependent antibody responses, whereas depletion of FoxP3+ regulatory and follicular regulatory cells did not. Thus, these data demonstrate that immune suppression with age is reversible and implicate Tfh10 cells as an intriguing link between “inflammaging” and impaired immune responses with age

    Lampe1: An ENU-Germline Mutation Causing Spontaneous Hepatosteatosis Identified through Targeted Exon-Enrichment and Next-Generation Sequencing

    Get PDF
    Using a small scale ENU mutagenesis approach we identified a recessive germline mutant, designated Lampe1 that exhibited growth retardation and spontaneous hepatosteatosis. Low resolution mapping based on 20 intercrossed Lampe1 mice revealed linkage to a ∼14 Mb interval on the distal site of chromosome 11 containing a total of 285 genes. Exons and 50 bp flanking sequences within the critical region were enriched with sequence capture microarrays and subsequently analyzed by next-generation sequencing. Using this approach 98.1 percent of the targeted DNA was covered with a depth of 10 or more reads per nucleotide and 3 homozygote mutations were identified. Two mutations represented intronic nucleotide changes whereas one mutation affected a splice donor site in intron 11–12 of Palmitoyl Acetyl-coenzyme A oxygenase-1 (Acox1), causing skipping of exon 12. Phenotyping of Acox1Lampe1 mutants revealed a progression from hepatosteatosis to steatohepatitis, and ultimately hepatocellular carcinoma. The current approach provides a highly efficient and affordable method to identify causative mutations induced by ENU mutagenesis and animal models relevant to human pathology
    corecore