15,726 research outputs found

    Soliton solution in dilaton-Maxwell gravity

    Get PDF
    The inverse scattering problem method application to construction of exact solution for Maxwell dilaton gravity system ia considered. By use of Belinsky and Zakharov L - A pair the solution of the theory is constructed. The rotating Kerr - like configuration with NUT - parameter is obtained.Comment: 8 pages in LaTex; published in Gen. Rel. Grav. pp. 32 (2000) 2219-222

    U(1,1)--Invariant Generation of Charges for Einstein--Maxwell--Dilaton--Axion Theory

    Get PDF
    The action of the isometry subgroup which preserves the trivial values of the fields is studied for the stationary D=4 Einstein--Maxwell--Dilaton--Axion theory. The technique for generation of charges and the corresponding procedure for construction of new solutions is formulated. A solution describing the double rotating dyon with independent values of all physical charges is presented.Comment: 14 pages, RevTex, no figurie

    Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    We investigate the dynamical behaviour of two limit cycle oscillators that interact with each other via time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if they have the same frequency. We demonstrate that this novel regime of amplitude "death" also exists for large collections of coupled identical oscillators and provide quantitative measures of this death region in the parameter space of coupling strength and time delay. Its implication for certain biological and physical applications is also pointed out.Comment: 4 aps formatted revtex pages; 3 figures; to be published in Phys. Rev. Let

    Solitons on compact and noncompact spaces in large noncommutativity

    Get PDF
    We study solutions at the minima of scalar field potentials for Moyal spaces and torii in the large non-commutativity and interprete these solitons in terms of non-BPS D-branes of string theory. We derive a mass spectrum formula linking different D-branes together on quantum torii and suggest that it describes general systems of D-brane bound states extending the D2-D0 one. Then we propose a shape for the effective potential approaching these quasi-stable bound states. We give the gauge symmetries of these systems of branes and show that they depend on the quantum torii representations.Comment: 25 pages, Latex, 1 figure (use epsfig.sty), corrected formul

    Kramer--Neugebauer Transformation for Einstein--Maxwell--Dilaton--Axion Theory

    Get PDF
    The Kramer--Neugebauer--like transformation is constructed for the stationary axisymmetric D=4 Einstein--Maxwell--dilaton--axion system. This transformation directly maps the dualized sigma--model equations of the theory into the nondualized ones. Also the new chiral 4×44 \times 4 matrix representation of the problem is presented.Comment: 13 pages, RevTex, no figure

    Bulk Kalb-Ramond field in Randall Sundrum scenario

    Full text link
    We have considered the most general gauge invariant five-dimensional action of a second rank antisymmetric Kalb-Ramond tensor gauge theory, including a topological term of the form ϵABLMNBABHLMN\epsilon^{ABLMN}B_{AB}H_{LMN} in a Randall-Sundrum scenario. Such a tensor field BABB_{AB} (whose rank-3 field strength tensor is HLMNH_{LMN}), which appears in the massless sector of a heterotic string theory, is assumed to coexist with the gravity in the bulk. The third rank field strength corresponding to the Kalb-Ramond field has a well-known geometric interpretation as the spacetime torsion. The only non-trivial classical solutions corresponding to the effective four-dimensional action are found to be self-dual or anti-selfdual Kalb-Ramond fields. This ensures that the four-dimensional effective action on the brane is parity-conserving. The massive modes for both cases, lying in the TeV range, are related to the fundamental parameters of the theory. These modes can be within the kinematic reach of forthcoming TeV scale experiments. However, the couplings of the massless as well as massive Kalb-Ramond modes with matter on the visible brane are found to be suppressed vis-a-vis that of the graviton by the warp factor, whence the conclusion is that both the massless and the massive torsion modes appear much weaker than curvature to an observer on the visible brane.Comment: 15 Pages,2 figures,Late

    Exact Black Hole Degeneracies and the Topological String

    Full text link
    Motivated by the recent conjecture of Ooguri, Strominger and Vafa, we compute the semi-canonical partition function of BPS black holes in N=4 and N=8 string theories, to all orders in perturbation theory. Not only are the black hole partition functions surprisingly simple; they capture the full topological string amplitudes, as expected from the OSV conjecture. The agreement is not perfect, however, as there are differences between the black hole and topological string partition functions even at the perturbative level. We propose a minimal modification of the OSV conjecture, in which these differences are understood as a nontrivial measure factor for the topological string.Comment: 24 page

    Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity

    Get PDF
    We study extremal black hole solutions in D dimensions with near horizon geometry AdS_2\times S^{D-2} in higher derivative gravity coupled to other scalar, vector and anti-symmetric tensor fields. We define an entropy function by integrating the Lagrangian density over S^{D-2} for a general AdS_2\times S^{D-2} background, taking the Legendre transform of the resulting function with respect to the parameters labelling the electric fields, and multiplying the result by a factor of 2\pi. We show that the values of the scalar fields at the horizon as well as the sizes of AdS_2 and S^{D-2} are determined by extremizing this entropy function with respect to the corresponding parameters, and the entropy of the black hole is given by the value of the entropy function at this extremum. Our analysis relies on the analysis of the equations of motion and does not directly make use of supersymmetry or specific structure of the higher derivative terms.Comment: LaTeX file, 12page

    Entropy Function for Heterotic Black Holes

    Get PDF
    We use the entropy function formalism to study the effect of the Gauss-Bonnet term on the entropy of spherically symmetric extremal black holes in heterotic string theory in four dimensions. Surprisingly the resulting entropy and the near horizon metric, gauge field strengths and the axion-dilaton field are identical to those obtained by Cardoso et. al. for a supersymmetric version of the theory that contains Weyl tensor squared term instead of the Gauss-Bonnet term. We also study the effect of holomorphic anomaly on the entropy using our formalism. Again the resulting attractor equations for the axion-dilaton field and the black hole entropy agree with the corresponding equations for the supersymmetric version of the theory. These results suggest that there might be a simpler description of supergravity with curvature squared terms in which we supersymmetrize the Gauss-Bonnet term instead of the Weyl tensor squared term.Comment: LaTeX file, 23 pages; v2: references added; v3: minor addition; v4: minor change

    Perturbation Treatment of Percus-Yevick Equation and its Application to Liquid Platinum and Palladium Metals

    Get PDF
    corecore