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Au analytical cxpreHnion for the structure factor has been derived by 
usin^ the square well potential as a perturbation over the hard sphere 
])otontial. Expressions for \ho isot/hormal pressTire derivatives of the 
slructuro fact(ir have bcMUi obtained in the UK'del. From these ex- 
prossions th(? third and the fourth onhn̂  strueturo functions arc derived. 
IViiTisport prop(‘i*ti(̂ s are cahailated using two different ineilu ds. Cal
culated struct»uro factor vahu ŝ for liquid platinum and palladium are in 
excellent agreement with the available experimental data.
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1. Introduction and Theory 

(A) S tru ctu ra l Properties

With the advent of the solution of the Pereus-Yovick equation for the hard sphere 
potential by Wertheim (1963) and Thiele (19(i3) rapid strides have been made in 
explaining the properti(\s of liquids using their results. The direct correlation 
function (D.C.F.), C (r ) obtained by Wertlioim can bo written as

C (r )  ^  - ( l-^ )-4 | (i+ 2 i;) ’*-~ 6 ŷ(l + 7;/2 )̂ (r/(r) +  ( l + 2i;)2(9//2Hr/cr)a} (1)

whore y ^ n p e r ^ j ^ ,  p ( =  N I V )  being the average number density and «r, the 
hard-sphero diameter.

Wo propose to perturb this solution with the square well attractive tail. 
The S.W. potential can be defim d as

U ( r )  oo,

- 0 ,

r  < o r

O’ <  r  <  Aar 

r > Act (2)

lioro A and e corresponds to the breadth and depth of the S.W. used. Following 
March (1968) and Lobowitz & Percus (1966), wo assume that

C (r ) -  - - U { r ) l k s T , r > ( T (3)

whore ka is the Boltzmann constant and T  the temperature in the. abi^lute 
scale.
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U sing eqs. (1V(3), w© im m ediately write down the Fourier Transform o f  the  
D .C .F . as

p C { K )  — —2477(l+2y)®(l—^)“ (̂A:(r)""®(sin k t r ^ k a  cos her)

+144^^(1 +̂ y/2)'*̂ (l ’—?/)“'*(A:(7)”̂ (-" /cV “) cos A’(r+2tcr sin A-0-+2 cos ter—2)
- 12172(1 + 2r;)2(l X A'V cos tfr+4P<r3 sin i o '+ 12F<T2

cos k a — -2iJc(T sin *̂cr—24 cos A-cr+24) ... (4 )

Now the structure factor, S^[h) is related to the Fourier Transform of the total 
correlation function C (h ) as

S ^ [ k ) ^ ( \ - ^ p C ( k ) Y ^  ... (5)
The potential paramot( r̂s can bo obtained by using the compressibility for

mula. llowov( ]̂-, wo priilbr to use tlû  exp(U'iincntal fii st maxima as has boon done 
by Ashcroft & Lecknor (19(i(i) in the case of the liquid rubidium for obtaining
tliOBO iiaramett r̂s.

Using oqs. (4) and (5), we can easily show that

p C [0 ) -  1 - ( 1  +2i;)2(1^97)-i+8i;6(^nT)-hA3-^l) ... (6 )
and

^̂2(0) - r ( l+ 2 7 ) '( l - ' / / ) ” ^ -8 7 ;e (M V (A ^ -l)] '’' (U

But >Sfj(0) is related to the isothermal compressibility x t  by the expression (Barton 
1974)

S M - P ^ ' b T x t  (8)
using (7) and (8), we can calculate X t ^

Egolstaff el u/ (1971) liave proposed a method for determining the triplet and 
quadruplet correlation fuuctions, g^(r, a) and f/,̂ (r, 9̂, /) of liquids through the iso
thermal pressure dorivafives of the structure factor, S ^ik ). The so called 
model in which the inlorparticlo distances in a liquid are assumed to vary invorsoly 
a.s the (nibc root, of the averagfi number density, p  for isotlu r̂mal (diangos of pressure 
describes the correlation functions well at or near the triple point.

Following Egelstaff (1971) the relation between [d S iJ^ k )ld P ]r  and the corre
lation term / / ( r ,  s) over the superposition approximation can be written as

J exp ( i k - r )  d r . J f / ( r ,  s)d s
V  V

=  (2;r)-V-‘ [.Sf,(ft) - 1 J - l f + \ S , { k )  -  l ] m 0 )  + .» , ( * ) - 1 ]
~ p k B T [d S ^ {k ) ld P ]

^ S ( k )

A * B s  !  A { k - k ' ) B [ k ' ) d k '
V
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whore (10)
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(11)

Using eqs. (4) and (6 ), we havt̂  

p k a T  [ - g i ^ l  =  y
'T

[(x(fcor)“{(feV‘®—3) sin fca'-f3fco' cos k c r}  ~[ f i ( k a r ) ^ { ( 4 / c ^ ( T '^ - -H ) c im  k a  

-\ r{ k ^ a r^ ^ H )k (T  sin A;a-4-8}-| - 12/cV“+24) X H cos k<r-\

+(A;*<r̂ —24Z:V+144)x/jcr sitiZ:nr - \4A}~(tlkB'r)(krrf^ {(A^k!^(r'^~~*S) sin Ato 
+ 3Â <r cos A^cr+(3 — sin ka Ĵc(t com k a \] ... (12 )

Following Egt4staff e t  a l  (1972), m i ' ĉ an sho\A that, the quatlruplet correlation 
function is related to the second pressure derivative of S ^ i k )  as

-  p k a T \^i

"T

d S M

r ds^(k)
d P H-

[ l - S ^ { k ) ] x p k B T  ] +|;uS’2(0 ) - 2 .V (0 )]x 1 1 - « # ) J

+ „ ; . o . p j A / . t . T ’ ]

Using eqs. (4) and (5). wo have

{p h ,T n d ^ S ^ {k )m r  • - 5  vL‘'>'a(*) «a(0)P(M-"->- 
[a(fccr)®x{(A;V*~12)fc<r coa kcr-\ (12— 5i:V‘̂ ) sin k (r }+ f l (k (r ) '^ y  

201:V®+40) cos fc(r+(20— SPer®) X 2fcer sin 1:<7—40}-f 
+y{(fc«(T«-42J;«(r*+504)tV“- 1008) cos fco^+(-fcV*+21i:V-126) X 
8fco- sin fc<r4-1008}-(e/l:fl2’)(fcfJ-)®{(12-5A»F<7=) sin Afco-4- (A*l:*cr*-12) X 
Al.o' cos Aifc(T4-(51:V®—12) sin lc(r-|-(12— A:V-)l:<r cô  ha}]

(131

- I p h a T  [
d S ,{k )  -j 

d P  J,
x[2 .syO )-3p fc j5T yS2 -■(i) [ ] (14)

Using eqs. (9)-(14), we can calculate \d S ^ (k )ld P ]r^  \d'^8^{k)ldP^]»F and the integrals 
in eqs. (9) and (13)«

Using the general theory of fluctuations of thermodynamic variables deve
loped by Gallon (1960), Ballentine & Lakshmi (1976) have recently evolved a 
method of evaluating higher order structure functions in the long wavelength



l im it . !rhoy have bHowii that the Hu-called '»-th order structure function S„(ki, 
î s’ K-i> 0) >8 given by

^2.......
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P ^ b T  .......+^V0).S„_i(fc„ .... k ^ , )

Koi‘ n 3, we have :

p /c u T \d i^ ^ {k )ld P ]T + S ^ (0 ),S ^ (k )  

and for n 4, in a limitiiig case.

(16)

(16)

S^(k . k. iy 0 )  ̂ p k B W ^ i^ 2 (k ) ld F ^ ]T + p k B T {S i (k )^ ^

X \ d S , ( k ) l d P ] r } + S . , \ 0 ) ^ S , ( k )  ... (17)

They have also shown that
. % ( y y  0, 0) '̂o«(0}.f2 + X , r ^ \ d X T / d P ] T }  ... (18)

and

iŜ ,(0, (t 0, 0) . ^ V ( i> ) > :{ ^ -^ lX T ^ ^ ^ \ d X T ld P ] T + X T ^ ^ ^ ^ ^ ^  ... (19)

VVe can use tliese equations 11> ealculati  ̂ S^{k\ k, 0) S^(ky — k, 0, 0), /S3(0, 0 , 0) 
and S ^ ( 0 ,  0 , 0 , 0 ) using this model iiKing t he sanu‘ potential parameters as arc 
used to eomj>ut(i S ^{k ).

( B )  T ra n s p o rt p ro p e rlU s

It is important to note that, the structure factor (lata arc very useful in eva
luation of certain transport properties of liquids. The following e(iuations deve
loped by Davis et a l (1961) and J. Paiyvos et a l (1967) have been utilised for the 
evaluation of shoar-viscc^sity ijs , bulk viscosity y/ii, thermal conductivity Ay and 
self-diffusion co-eflficienl 1) from tJie computed structure factor data. It may 
be mentioned that we have used effect!vt  ̂ mass m* instead of ordinary mass m  

by them. The significance of m* will be explained in what follows

5  / 
^  16«r» (

m ^kuli^
7T

\ i  f   ̂̂  ' ' ' i '  (.^0 )̂1 ]̂)

l f f ( e r ) + A V ( A < T ) [ H + J ( ^ )

ZOTT J
. . .  (20)

L&n
w * -

/ m * k B T  

\ n
]*[!7(o' ) + A W « » ’)E] . . .  (2 1)



386 E. V. Gopala Eao and B. Sen

_  j 6 _ / i f l - ) .  f  ( > + 5 * W + ^ V W l ) ’
64(t® I n m *  / i ,U ( < r) + A » ^ ( ( A c r ) [ s + J J x ( e / W  ]

+  2 f ” (4^)%(o-)+A‘ (Aa)

® =  S -  2 Bp(T^

i
, x ( * i L ^ )  [i7(tr)+A®g(A(r)S]-^
' \ n m ^ /

Here m *  is the effective mass o f atom s and i// and S  have been, defined as 

Sfr =  l - e x p ( # i , I ’)+ (e/ 2 ijjr)  ( l +  o x p { e lk s T )  )

(23)

(22)

X J  (^ x ^ )x ^ d x
(6IJcbT)1

and

S  exp(6‘/ A ;f lT ) -e / W -2  f  exp

(24)

(25)

It may be pointed out that the (/(r) values at r — o' and r  — Ao- can bo ob
tained from a smooth graph of g (r ) versus r which in turn can bo computed bĵ  
tlio li’ourior inversion of S{Jc). The ^  and iti values can bo obtained from the 
literature (Luks et a l 19G6).

Alsp equations developed by Kao et al (1976) have been used for calculating 
surface tension, yj, shear viscosity fjs, solf-diffuBion co-efficiont 1). These equa
tions are :

y , =  [ g ( < r ) - \ * { l —GX]p{— c jk sT ))g (X (r)]
O

(26)

Vt’» =  M p'(ff)+ (1 -  exp (e jk s T ))X A®p'(Atr)}
7 .8 4 8 x 1 5

-5{(jr(cr)+(l—  exp (e/ifcii2’))A®p(A(7)}] (27)

D = ^  - ^ ^ ( ^ ^ y " ' \ [ g ' { < r ) M l - ^ ^ i e l k B T ) ) > < g \ ^ < T ) ]  ... (28)

Hera, m *  the effective mass is given b y

m *  fnilQ{cr){VI(t )^ (29)



whore I* ia fcho ao-oalled correlation length. g \ r )  can be computed Irom the- 
relatiou
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!7'0’) =  -[flrW -l]/r+ (2 ;rV )“V-i J S ( k ) ^ l ] k ^  qob k r dk ... (30)

g'((r) and gf'(A(r) can be obtained from a smooth curve obtained by plotting g'(r) 
against r.

2. Results and Discussions

^ ^ {k ) v̂ alues ol liquid platinum at 1780*̂ 0 and liquid palladium at 1580*̂  C>‘ 
calculated from eqs. (4) and (5) are shovii in figure 1 along vith expoi’imental

Fic. 1. Stmeturo fairloi* S(k) lor liquid plAtiaum and palladium oA'o plottud againal/t.

pt>ints obtained by Waseda (1975). Potential parameters used are shown in 
table 1. The argument between calculated and experimental values is excellent. 
This fact leads us to conclude that the present model is by far the best available 
one to explain the structural properties of liquid platinum metals. Values of 
the isothermal compressibility, X t  uf those metals arc also calculated using oqs.
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(7) and (8). Those values axo also shown in table 1. Unfortunately no experi
mental data arc available uptil now to compart! with our results.

[d S ^ (k ) ld P ]r ,  [d ^ i i t (K ) ld P % ,

H{k) and the integral in ecj. (13) are calculated by using eqs. (12), (14), (9) and 
(13) respectively and are shown in figures 2, 4, 3 and 5 respectively. The convo-

Kia. 3. P kaT I  3> ] g
VH. k curves for liquid platinum and palladium.

lution in equation (9) has been performed by a Fourier transform teohnique as 
followed by Egelstaff (1971) taking care to ensure the orthogonality of the discrete 
sine transforms o.g. (Lado 1971). The general sliapes of the curves in all the 
cases are similar to those obtained by Egelstaff et al (1971) and Rao el al (1976) 
and endm’sod by experimental observations of Egelstaff et td (1971). In the 
absonoo of experimental data, we have every reason to believe our results.
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rt may bo mentioned that model gives a worng value for p k ^ [d S ^ {Q ) jd P ']  

But in this mmlol, the value of pkffl^ come wrong an i(. is

(salculatod using oq. (7 ).
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P^o. n. H[1c) v«. h curves for liquid platinum and palladium.

— k, 0) and 8^(k , — k, 0, 0) calculated from eqs. (16) and (1 7 ) respec
tively arc shown in figures 6 and 7 respectively. Values of (Sg(0, 0, 0) and 
<S4(0 , 0, 0 , 0 ) are calculated from equations (18) and (19) respectively. Unfortu
nately no experimental data are available uptil now. But wo note that the shapes 
of the curves and tlie values of S,(0, 0 , 0) and -84(0, 0, 0. 0) are very similar to 
those obtained by Ballentino & Lakshmi (19 7 5).

Transport properties are calculated using eqs. (20)-(30) are shown in Table 2 . 
Unfortunately no experimental data are available upto date. But it is gratifying 
to note that the values are of the expected order of the liquid metals and the 
values calculated by two different methods are close to each other. Hence these 
results are self-consistent.
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