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R. V. GoraLa Rao axDp D. SEN
Department of Physical Chemistry, Jadavpur University, Calcutta-700032
(Received 24 September 1976)

Aun analytical oxpression for the structure faoctor has been derived by
using the square well potential as a perturbation over the hard sphere
potential. Expressions for the isothcrmal pressure derivatives of the
slructure factor have been obtained in the p=2/% medel.  From these ox-
prossions the third and the fourth order structure funections are derived.
Transport propertios are ealeulated using two diffcrent metheds.  Cal-
culated structure factor values for liquid platinam and palladium are in
excellent agreoment with the available cxperimental data.

1. INTRODUCTION AND THEORY

(A) Structural Properties

With the advont of the solution of tho Percus-Yevick equation for the hard sghere
potential by Worthoim (1963) and Thiele (1963) rapid strides have been made in
oxplaining the properties of liquids using their results. The direct corrclatian
function (D.C.F.), O(r) ohtained by Werthoim can bo written as

. C(r) = —(1—7)~4(1 4+279)2—69(1 +-5/2)%(r/o"} +(1 -+-27)2(5/2)(r [0} .. (D

whore % = mpo?[6, p(= N/[V) boing tho average number density and o, the
hard-sphere diametor.

Wo propose to porturb this solution with the square woll atiractive tail.
The S.W. potential can be defined as

‘U(r) = o0, r<o
= —€, Oo<<r<Aoc

=0, r> Ao - (2)

here A and € corresponds to the breadth and depth of the S.W. used. Following
March (1968) and Lebowitz & Percus (1966), wo assumo that

Clr) = —=UW/kgT, r>c )

whore kg is the Boltzmann constant and 7' the temperature in the. absolute
soale.
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Using eqs. (1)-(3), we immediately write down the Fourier Transform of the
D.C.F. as

pO(K) = —245(1 +29)%(1 —9)~4(ko)~3(sin ko — ko cos ko)

+1449*(1 +-9/2)*(1 —9)~*(ko)4(— k*o2) cos ko +2ke sin ko +2 cos ko—2)
—12p3(1429)2(1 —)~4(ko)-9 X (—k*a® cos ko 4-4k%03 sin ko +12k%02

cos ko —24ko sin ko —24 cos ko +-24) - (4)

Now the structuro factor, S,(k) is rolated to the Fourier Transform of the total
correlation function C(k) as

Sa(k) = (1 —pC(k)]-2 e (B)

The potential pwrumct;("rs can be obtained by using the compressibility for-

mula.  However, wo prefer to use the experimental first maxima as has beon dono

by Asheroft & Lockner (1966) in the case ol the liquid rubidium for obtaining
theso parameters.

Using oqs. (4) and (5), we can casily show that
pO(0) = 1—(1 +29)(1 —)~44-8ye(kpT) (A2 —1) . (8)
S3(0) = [(1420)(1 —7)~*—8ye(kpT) (A2~ )] e (1)

and

Buat 8,(0) is rolated to tho isothermal compressibility yz by the expression (Barton
1974)

5,(0) = pksTxr o (8)
using (7) and (8), we can calculate yp.

Egolstaff e al (1971) have proposed a method for determining the triplet and
quadruplet corrolation functions, gy(r, s) and g,(r, s, t) of liquids through the iso-
thormal prossure dorivatives of the structure factor, S,(k). The so called p-1/3
modal in which the interparticle distances in a liquid are assumed to vary inversoly

as the cube root. of the averago number density, p for isothermal changos of pressure
doscribes the correlation functions well at or near tho triple point.

Following Bgelstaff (1971) the relation botwoen [38,(k)/dP]r and the corre-
latian term II(r, s) over the superposition approximation can be written as

Pt J: oxp (ik.r) dr. ”f H(r, s)ds
= (2m)~3p 1 8y(k) — L[ Sp(k) — 112 +[Sy(k) — 1][S5(0) +8,(k) —1]
—phkaT[08,(k)/0P]
EE(’C)
whore  A*B= [ A(k—Kk')B(k')IK (10)
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In the =V model, [38,(k)/P}, becomes '

”"”T[M] =~ g by0) ["’fggk ]

(1)
oP |, 3

T

Using egs. (4) and (5), we have

pksT [aSZ(k) ] = 88,(0)[ Sy(k)nlko)=s »
T

La(ka)*{(k*o?—3) sin ko +3ko cos ka'}+-f(ka)2{(4kiot—8)cos ko

+(k?0®—8)ka sin ko +-8} - y{(kio? - 12kPa® -|-24) X 6 cos ko -|
+(ktot—24k%0 4-144) X ko sin ko -- 144} — (¢ [kgT) (ke )® ¥ {(A%k202— 3) sin Ako
+3Ako cos Ako 4-(3—k2o?) sin ko - Bko con ka}] o (12)

Following Egelstaff et al (1972). we can show that the quadruplet correlation
function is related to the scecond pressure derivative of S,(k) as

(st 2588 = phar [ 2542 <
T

(1= Sy(81]x pkaT | 2550 ] +13:8,0) 28,40 X [1— k)

T

o o oxp ke rir.p Sulapkat [ 200 2000 00D ]y

Using ege. (4) and (B). wo have

(PksTPL0*Sy(K)OP 5 yLSalk).Sy(0)(ka) =0 »

[ee(ka)® X {(k*o? —12)ko cos ko -| (12-—5k*0?) sin ko}+p(ko)? >
{(k*0*—20%%02+-40) cos ko +(20— 3k*a?) X 2ko sin ko —40}-+

+¥{(kbo® —42ks0t +-504k?a2— 1008) cos ko + (— kiot +21k%0? —126) x
8ko sin ko 41008} —(e/kgT)(ko)3{(12—5A%k?0®) sin Ako + (A%kPot—12) X
Ako cos Ako 4-(6k20?—12) sin ko -1-(12—k2o®)ko cog ko}]

—§pk3T[2%’I(~;lf)w] x[2se(o)-3pk37'><sg-l(k)[‘15‘;?}(,")] T (14)
T

Using eqgs. (9)-(14), we can calculate [3S,(k)/0P]r. |3*8y(k)/dP*]p and the integrals
in eqgs. (9) and (13).

Using the general theory of fluctuations of thermodynamic variables deve-
loped by Callen (1960), Ballentine & Lakshmi (1975) have recently evolved a
method of evaluating higher order structure functions in the long wavelength
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limit. Thoy have shown that the so-called #-th order structure function Sk,
ky, ..., ky_y, 0) is given by

Sollky, ke ... ky_y, 0)
= pkgT [t%)s,,_l(kl. /c"_,)]T +84(0). S p_y(Kgs - Krney) ... (18)
KFor n = 3, we have :
S(k. —k, 0) = pkyT[085(k)/OP 1+ 55(0). Salk) .. (16)

and for » = 4. in a limiting casc.

Sy(k, ~k. 0,0) — pkpT[028y(k)/OP2)p-4-pT{ Sa(k)[85(0)/0L)p-+38,(0)

x[98,(k)[aP]r}+8,%0).Sy(k) e (17)
They have also shown that
S50, 0. 0) = 8,HOVA2 4y, Oy /0P ]} . (18)
and
S54(0, 0,0, 0) = S}0) > {6 +Txp 4 [Oxp/0L)p+ Xp~ (X p/0P)p} ... (19)

We cun use these equations to caleulae Ny(h. &, 0) Sk, —k, 0,0), 840, 0, 0)
and 84(0, 0. 0, 0) using this model using the same potential parameters as are
ured to computo Sy(k).

(B) Transporl properties

It is important to note that the structure fuctor data are very useful in eva-
luation of certain transport properties of liquids. The following equations dove-
loped by Davis et al (1961) and J. Palyvos et al (1967) have been utilised for the
evaluation of shear-viscosity 7, bulk viscosity »5, thermal conductivity Ap and
self-diffusion co-efficient £ from the computed structure factor data. It may
be mentioned that we have used effective mass m* instead of ordinary mass m
by them. The significance of m* will be explained in what follows

Ns =

5 ( mAleyT )4 y { (14 nlg(a) +A%(A0)Y])

10o5h a(cr>+A=g<A«r)[a+6(7)
(471)’[0(0)4-&"/(%6) Il . (20)
us =1 ”‘-','ﬁ"T ) lnto) +A4gA7)E] . (2)
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5 (T [ (1 o)+ )

AT =S
640\ am* L Lglo) +A%(h0) | E g x(elksT |
+ 32 4yrlg0) +2420) 311 - (22)
26m J
3 [k}
D= 2% ( ) o) +A0)E] - (23)

Hore m* is the effectivo mass of atoms and y and E have been defined as

¥ = 1—oxp (¢/ksT)+(e/2k5T) ( 1+ ;;;’ exp (¢/k5T) )

x | —2%)2%, . (24
(Slk£ - exp (—a?%)z*dx (24)

and

T = oxp (¢/kpT)—ekpT—2 | 2%a*+e/kyT)t oxp (—a?)dx .. (25)
0

1t may be pointed out that the g(r) values at r = o and r = Ao can be ob-
tained from a smooth graph of g(r) vorsus 7 which in turn ean be computed by
the Fourior inversion of S(k). Tho ¥ and E values can bo obtained from the
litorature (Luks et al 1966).

Alsp equations developed by Rao et al (1976) have been used for calculating
surface tension, v,, shear viscosity s, self-diffusion co-efficient ). These oqua-
tions aro :

o= — Zfzﬂ‘ng".‘ [g(0)— A% —exp(—€/ksT))g(A0)] (26)
7 = *l@%ﬁg;si%f_x[a{g’(a’)+(l— exp (¢/kgT)) X A’ (A0)}

—b{g(o)+(1— exp (¢/kpT))A%(A0)}] o - @)

D= "2'%5 (Figﬂ )—wxla'(cr)+(1— exp (¢/ksT)) Xg'(A0)] ... (28)

Here, m* the effective mass is given by

m* = myg(e)(¥'[o)® | . (29)
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where I¥ is tho so-called correlation length. g¢'(r) can be computed from the-
relation

g'(r) = —[g(r)—1)fr+(2m2p)-21r-2 ff S(k)—11k* cos kr dk .. (30)

#'(0) and g'(Ac) can be obtained from a smooth curve obtained Ly plotting g'(r)
against 7. -

2. Resuvurs AND DiSoussions

Sy(k) values of liquid platinum at 1780°C and liquid palladium at 1580°C
calculated from egs. (4) and (5) are shown in figure 1 along with oxperimental

CALC.
E XPT. e 0
2+
< %mm
e 4%&9‘( Pd(1580°C)

K(A') —>

F1¢. 1. Structuro factor S(k) for hquid platinum and palladium oo plotted against k.

points obtained by Waseda (1975). Potential parameters used are shown in
table 1. The argument between calculated and experimontal values is excellent.
This fact leads us 1o conclude that the present model is by far the best available
one to explain the structural properties of liquid platinum metals. Values of
the isothermal compressibility, yr of these metals arc also calculated using ogs.
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(7) and (8). Those values are aleo shown in table 1. Unfortunately no oxperi-
mental data are available uptil now to compare with our results.

[08,(k)/0P]p, [0*8y(K)[OP%)y,

ﬁ(k) and the integral in eq. (13) are calculated by using eqs. (12), (14), (9) and
(13) rospectively and aro shown in figures 2, 4, 3 and 5 respectively. The convo-

016
010
00| e N\ /\
I \/Pd(1580'0)
-
—
Yla
0p-01
_Jn A
A o
x
A8
\ ~
pPt(1780°C)
-0°1
-0l RSSO U SN A SO NUSPVOR ORI IR P
0 \ 2 3 4 5 6 7 8 9 10
K (K‘)-—*

Via. 2. Pkgl [as’;? ] v8. k curves for liquid platinwn and palladium.
2

lution in oquation (9) has been performed by a Fourier transform technique as
followed by Egelstaff (1971) taking care to ensuro the orthogonality of the discrete
gine transforms o.g. (Lado 1971). The genoral shapes of tho curves in all the
cases are similar to those obtained by Egelstaff et al (1971) and Rao et al (1975)
and endorsod by experimontal obsorvations of Egolstaff et al (1971). In the
absenco of oxperimental data, we have every reason to believe our results.
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It may bo mentioned that p=1/3 model gives a worng value for pkgT[08,(0)/0P]
38,4(0)
P

But in this modol, tho value of pk,T [ P

]T does not come wrong as it is

colculatod using eq. (7).

50K

a0

301

20|\

H(K)—>

~
54
=)

—w——‘"’
Pd(1580°C)

\,

PL(1780°C)
\ A
|

.l ™~/ |

0 0 20 30 40 50

<

K(A')—

Fra. 8. H(k) vs. k curves for liquid platinum and palladium.

Sy(k, —k.0) and S8,(k. —k, 0, 0) calculated from eqs. (16) and (17) respec-
tively are shown in figures 6 and 7 respectively. Values of 850, 0, 0) and
84(0,0,0,0) are caleulated from equations (18) and (19) respectively. Unfortu-
natoly no experimontal data are available uptil now. But wo note that the shapes
of the curves and the valuos of 840, 0, 0) and 8,(0,0,0,0) are very similar to
those obtained by Ballentine & Lakshmi (1975).

Transpott propertios are caleulated using eqs. (20)-(30) are shown in Table 2.
Unfortunately no exporimental data ave available upto date. But it is gratifying
to noto that the values are of the expected order of the liquid metals and the
values caleulated by two difforent methods are olose to each other. Henoe these
results are self-consistent.
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