260 research outputs found

    Investigation of the transient fuel preburner manifold and combustor

    Get PDF
    A computational fluid dynamics (CFD) model with finite rate reactions, FDNS, was developed to study the start transient of the Space Shuttle Main Engine (SSME) fuel preburner (FPB). FDNS is a time accurate, pressure based CFD code. An upwind scheme was employed for spatial discretization. The upwind scheme was based on second and fourth order central differencing with adaptive artificial dissipation. A state of the art two-equation k-epsilon (T) turbulence model was employed for the turbulence calculation. A Pade' Rational Solution (PARASOL) chemistry algorithm was coupled with the point implicit procedure. FDNS was benchmarked with three well documented experiments: a confined swirling coaxial jet, a non-reactive ramjet dump combustor, and a reactive ramjet dump combustor. Excellent comparisons were obtained for the benchmark cases. The code was then used to study the start transient of an axisymmetric SSME fuel preburner. Predicted transient operation of the preburner agrees well with experiment. Furthermore, it was also found that an appreciable amount of unburned oxygen entered the turbine stages

    Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion

    Get PDF
    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented

    Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    Get PDF
    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance

    CFD assessment of the carbon monoxide and nitric oxide formation from RD-170 hot-fire testing at MSFC

    Get PDF
    Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust plume pollutant environment of the RD-170 engine hot-firing on the F1 Test Stand at Marshall Space Flight Center. Researchers know that rocket engine hot-firing has the potential for forming thermal nitric oxides (NOx), as well as producing carbon monoxide (CO) when hydrocarbon fuels are used. Because of the complicated physics involved, however, little attempt has been made to predict the pollutant emissions from ground-based engine testing, except for simplified methods which can grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work, therefore, has been to develop a technology using CFD to describe the underlying pollutant emission physics from ground-based rocket engine testing. This resultant technology is based on a three-dimensional, viscous flow, pressure-based CFD formulation, where wet CO and thermal NOx finite-rate chemistry mechanisms are solved with a Penalty function method

    Simulating Quantum Dynamics with Entanglement Mean Field Theory

    Full text link
    Exactly solvable many-body systems are few and far between, and the utility of approximate methods cannot be overestimated. Entanglement mean field theory is an approximate method to handle such systems. While mean field theories reduce the many-body system to an effective single-body one, entanglement mean field theory reduces it to a two-body system. And in contrast to mean field theories where the self-consistency equations are in terms of single-site physical parameters, those in entanglement mean field theory are in terms of both single- and two-site parameters. Hitherto, the theory has been applied to predict properties of the static states, like ground and thermal states, of many-body systems. Here we give a method to employ it to predict properties of time-evolved states. The predictions are then compared with known results of paradigmatic spin Hamiltonians.Comment: 8 pages, 3 figure

    Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    Get PDF
    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements

    Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Get PDF
    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented

    Aeroelastic Modeling of a Nozzle Startup Transient

    Get PDF
    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented

    Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    Get PDF
    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle
    • …
    corecore