16,728 research outputs found

    Hidden Translation and Translating Coset in Quantum Computing

    Get PDF
    We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of non-abelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Zpn\Z_{p}^{n}, whenever pp is a fixed prime. For the induction step, we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden Subgroup, and prove a powerful self-reducibility result: Translating Coset in a finite solvable group GG is reducible to instances of Translating Coset in G/NG/N and NN, for appropriate normal subgroups NN of GG. Our self-reducibility framework combined with Kuperberg's subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.Comment: Journal version: change of title and several minor update

    Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    Get PDF
    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.Comment: The manuscripts includes six figure

    On the evolution of tachyonic perturbations at super-Hubble scales

    Full text link
    In the slow-roll inflationary scenario, the amplitude of the curvature perturbations approaches a constant value soon after the modes leave the Hubble radius. However, relatively recently, it was shown that the amplitude of the curvature perturbations induced by the canonical scalar field can grow at super-Hubble scales if there is either a transition to fast roll inflation or if inflation is interrupted for some period of time. In this work, we extend the earlier analysis to the case of a non-canonical scalar field described by the Dirac-Born-Infeld action. With the help of a specific example, we show that the amplitude of the tachyonic perturbations can be enhanced or suppressed at super-Hubble scales if there is a transition from slow roll to fast roll inflation. We also illustrate as to how the growth of the entropy perturbations during the fast roll regime proves to be responsible for the change in the amplitude of the curvature perturbations at super-Hubble scales. Furthermore, following the earlier analysis for the canonical scalar field, we show that the power spectrum evaluated in the long wavelength approximation matches the exact power spectrum obtained numerically very well. Finally, we briefly comment on an application of this phenomenon.Comment: v1: 15 pages, 4 figures; v2: 16 pages, 5 figures, power spectrum included, discussion in section 5 enlarged, references added; v3: 17 pages, 5 figures, enhancement AS WELL AS suppression of modes at super-Hubble scales pointed out, title changed, discussions enlarged, references added, to appear in JCA

    On thin-shell wormholes evolving in flat FRW spacetimes

    Full text link
    We analize the stability of a class of thin-shell wormholes with spherical symmetry evolving in flat FRW spacetimes. The wormholes considered here are supported at the throat by a perfect fluid with equation of state P=wσ\mathcal{P}=w\sigma and have a physical radius equal to aRaR, where aa is a time-dependent function describing the dynamics of the throat and RR is the background scale factor. The study of wormhole stability is done by means of the stability analysis of dynamic systems.Comment: 8 pages; to appear in MPL

    One-loop Evolution of a Rolling Tachyon

    Full text link
    We study the time evolution of the one-loop diagram in Sen's rolling tachyon background. We find that at least in the long cylinder case they grow rapidly at late time, due to the exponential growth of the timelike oscillator terms in the boundary state. This can also be interpreted as the virtual open string pair creation in the decaying brane. This behavior indicates a breakdown of this rolling tachyon solution at some point during the evolution. We also discuss the closed string emission from this one-loop diagram, and the evolution of a one-loop diagram connecting a decaying brane to a stable brane, which is responsible for the physical open string creation on the stable brane.Comment: 21 pages, 2 figures; v2: references added, comments revised in various places; v3: footnotes 7&8 added, revised version to appear in PR

    Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons

    Get PDF
    Both in string field theory and in p-adic string theory the equations of motion involve infinite number of time derivatives. We argue that the initial value problem is qualitatively different from that obtained in the limit of many time derivatives in that the space of initial conditions becomes strongly constrained. We calculate the energy-momentum tensor and study in detail time dependent solutions representing tachyons rolling on the p-adic string theory potentials. For even potentials we find surprising small oscillations at the tachyon vacuum. These are not conventional physical states but rather anharmonic oscillations with a nontrivial frequency--amplitude relation. When the potentials are not even, small oscillatory solutions around the bottom must grow in amplitude without a bound. Open string field theory resembles this latter case, the tachyon rolls to the bottom and ever growing oscillations ensue. We discuss the significance of these results for the issues of emerging closed strings and tachyon matter.Comment: 46 pages, 14 figures, LaTeX. Replaced version: Minor typos corrected, some figures edited for clarit

    Non-Supersymmetric Attractors in String Theory

    Get PDF
    We find examples of non-supersymmetric attractors in Type II string theory compactified on a Calabi Yau three-fold. For a non-supersymmetric attractor the fixed values to which the moduli are drawn at the horizon must minimise an effective potential. For Type IIA at large volume, we consider a configuration carrying D0, D2, D4 and D6 brane charge. When the D6 brane charge is zero, we find for some range of the other charges, that a non-supersymmetric attractor solution exists. When the D6 brane charge is non-zero, we find for some range of charges, a supersymmetry breaking extremum of the effective potential. Closer examination reveals though that it is not a minimum of the effective potential and hence the corresponding black hole solution is not an attractor. Away from large volume, we consider the specific case of the quintic in CP^4. Working in the mirror IIB description we find non-supersymmetric attractors near the Gepner point.Comment: Added a few clarification

    Stability of thin-shell wormholes with spherical symmetry

    Full text link
    In this article, the stability of a general class of spherically symmetric thin-shell wormholes is studied under perturbations preserving the symmetry. For this purpose, the equation of state at the throat is linearized around the static solutions. The formalism presented here is applied to dilaton wormholes and it is found that there is a smaller range of possible stable configurations for them than in the case of Reissner-Nordstrom wormholes with the same charge.Comment: 14 pages, 3 figure

    Proper acceleration, geometric tachyon and dynamics of a fundamental string near Dpp branes

    Full text link
    We present a detailed analysis of our recent observation that the origin of the geometric tachyon, which arises when a Dpp-brane propagates in the vicinity of a stack of coincident NS5-branes, is due to the proper acceleration generated by the background dilaton field. We show that when a fundamental string (F-string), described by the Nambu-Goto action, is moving in the background of a stack of coincident Dpp-branes, the geometric tachyon mode can also appear since the overall conformal mode of the induced metric for the string can act as a source for proper acceleration. We also studied the detailed dynamics of the F-string as well as the instability by mapping the Nambu-Goto action of the F-string to the tachyon effective action of the non-BPS D-string. We qualitatively argue that the condensation of the geometric tachyon is responsible for the (F,Dpp) bound state formation.Comment: 26 pages, v2: added references, v3: one ref. updated, to appear in Class. and Quant. Gravit
    corecore