We give efficient quantum algorithms for the problems of Hidden Translation
and Hidden Subgroup in a large class of non-abelian solvable groups including
solvable groups of constant exponent and of constant length derived series. Our
algorithms are recursive. For the base case, we solve efficiently Hidden
Translation in Zpn, whenever p is a fixed prime. For the induction
step, we introduce the problem Translating Coset generalizing both Hidden
Translation and Hidden Subgroup, and prove a powerful self-reducibility result:
Translating Coset in a finite solvable group G is reducible to instances of
Translating Coset in G/N and N, for appropriate normal subgroups N of
G. Our self-reducibility framework combined with Kuperberg's subexponential
quantum algorithm for solving Hidden Translation in any abelian group, leads to
subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in
any solvable group.Comment: Journal version: change of title and several minor update