17 research outputs found

    Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes

    Get PDF
    The objective of this study was to determine the prevalence, mutual associations, clinical manifestations, and diagnoses associated with serum autoantibodies, as detected using recently available immunoassays, in patients with autoimmune myositis (AIM). Sera and clinical data were collected from 100 patients with AIM followed longitudinally. Sera were screened cross-sectionally for 21 autoantibodies by multiplex addressable laser bead immunoassay, line blot immunoassay, immunoprecipitation of in vitro translated recombinant protein, protein A assisted immunoprecipitation, and enzyme-linked immunosorbent assay. Diagnoses were determined using the Bohan and Peter classification as well as recently proposed classifications. Relationships between autoantibodies and clinical manifestations were analyzed by multiple logistic regression. One or more autoantibodies encompassing 19 specificities were present in 80% of the patients. The most common autoantibodies were anti-Ro52 (30% of patients), anti-Ku (23%), anti-synthetases (22%), anti-U1RNP (15%), and anti-fibrillarin (14%). In the presence of autoantibodies to Ku, synthetases, U1RNP, fibrillarin, PM-Scl, or scleroderma autoantigens, at least one more autoantibody was detected in the majority of sera and at least two more autoantibodies in over one-third of sera. The largest number of concurrent autoantibodies was six autoantibodies. Overall, 44 distinct combinations of autoantibodies were counted. Most autoantibodies were unrestricted to any AIM diagnostic category. Distinct clinical syndromes and therapeutic responses were associated with anti-Jo-1, anti-fibrillarin, anti-U1RNP, anti-Ro, anti-Ro52, and autoantibodies to scleroderma autoantigens. We conclude that a significant proportion of AIM patients are characterized by complex associations of autoantibodies. Certain myositis autoantibodies are markers for distinct overlap syndromes and predict therapeutic outcomes. The ultimate clinical features, disease course, and response to therapy in a given AIM patient may be linked to the particular set of associated autoantibodies. These results provide a rationale for patient profiling and its application to therapeutics, because it cannot be assumed that the B-cell response is the same even in the majority of patients in a given diagnostic category

    Scleromyositis: A distinct novel entity within the systemic sclerosis and autoimmune myositis spectrum. Implications for care and pathogenesis

    Get PDF
    Systemic sclerosis and autoimmune myositis are both associated with decreased quality of life and increased mortality. Their prognosis and management largely depend on the disease subgroups. Indeed, systemic sclerosis is a heterogeneous disease, the two predominant forms of the disease being limited and diffuse scleroderma. Autoimmune myositis is also a heterogeneous group of myopathies that classically encompass necrotizing myopathy, antisynthetase syndrome, dermatomyositis and inclusion body myositis. Recent data revealed that an additional disease subset, denominated “scleromyositis”, should be recognized within both the systemic sclerosis and the autoimmune myositis spectrum. We performed an in-depth review of the literature with the aim of better delineating scleromyositis. Our review highlights that this concept is supported by recent clinical, serological and histopathological findings that have important implications for patient management and understanding of the disease pathophysiology. As compared with other subsets of systemic sclerosis and autoimmune myositis, scleromyositis patients can present with a characteristic pattern of muscle involvement (i.e. distribution of muscle weakness) along with multisystemic involvement, and some of these extra-muscular complications are associated with poor prognosis. Several autoantibodies have been specifically associated with scleromyositis, but they are not currently integrated in diagnostic and classification criteria for systemic sclerosis and autoimmune myositis. Finally, striking vasculopathic lesions at muscle biopsy have been shown to be hallmarks of scleromyositis, providing a strong anatomopathological substratum for the concept of scleromyositis. These findings bring new insights into the pathogenesis of scleromyositis and help to diagnose this condition, in patients with subtle SSc features and/or no autoantibodies (i.e. “seronegative” scleromyositis). No guidelines are available for the management of these patients, but recent data are showing the way towards a new therapeutic approach dedicated to these patients

    Frequency of serum autoantibodies to 21 autoantigens in 100 French Canadian patients with autoimmune myositis

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes"</p><p>http://arthritis-research.com/content/9/4/R78</p><p>Arthritis Research & Therapy 2007;9(4):R78-R78.</p><p>Published online 9 Aug 2007</p><p>PMCID:PMC2206383.</p><p></p> Autoantibodies were observed to 19 (90%) of the specificities tested. Anti-OJ and anti-EJ (both anti-synthetases) were not detected. One or more autoantibodies were present in 80% of patients. Autoantibodies to synthetases (Jo-1, PL-7, PL-12, and KS) and systemic sclerosis autoantibodies were present overall in 22% and 9% of patients, respectively. The overall frequency is over 100% because 44% of patients had more than one autoantibody. Anti-Ro were determined by ALBIA whereas anti-Ro52 and anti-Ro60 fine specificities were identified by ELISA. See Materials and methods (in the text) for a description of immunoasssays. ALBIA, addressable laser bead immunoassay; CENP, centromere protein; ELISA, enzyme-linked immunosorbent assay; RNAPOLIII, RNA polymerase III; SRP, signal recognition particle; TOPO, topoisomerase I

    Topoisomerase I peptide-loaded dendritic cells induce autoantibody response as well as skin and lung fibrosis

    No full text
    <p>DNA Topoisomerase I (TopoI) is a candidate autoantigen for diffuse cutaneous systemic sclerosis (dcSSc) associated with fatal lung disease. Dendritic cells (DCs) contribute to bleomycin-induced lung fibrosis. However, the possibility that TopoI-loaded DCs are involved in the initiation and/or perpetuation of dcSSc has not been explored. Here, we show that immunization with TopoI peptide-loaded DCs induces anti-TopoI autoantibody response and long-term fibrosis. Mice were repeatedly immunized with unpulsed DCs or DCs loaded with either TOPOIA or TOPOIB peptides, selected from different regions of TopoI. At week 12 after initial DC immunization, TOPOIA DCs but not TOPOIB DCs immunization induced mixed inflammation and fibrosis in lungs and skin. At a late time point (week 18), both TOPOIA DCs and TOPOIB DCs groups displayed increased alpha-smooth muscle actin expression in lungs and dermis along with skin fibrosis distal from the site of injection when compared with unpulsed DCs. Both TopoI peptide-DC-immunized groups developed IgG2a anti-TopoI autoantibody response. At week 10, signs of perivascular, peribronchial, and parenchymal pulmonary inflammation were already observed in the TOPOIA DCs group, together with transient elevation in bronchoalveolar lavage cell counts, IL-17A expression, and CXCL4 production, a biomarker of early human dcSSc. Collectively, TopoI peptide DCs induce progressive autoantibody response as well as development of protracted skin and lung dcSSc-like disease. Pronounced lung inflammation, transient IL-17A, and CXCL4 expression precede fibrosis development. Our immunization strategy, that uses self immune system and autoantigen, will help to further investigate the pathogenesis of this complex autoimmune disorder with unmet medical needs.</p

    Myositis with prominent B-cell aggregates causing shrinking lung syndrome in systemic lupus erythematosus: a case report

    No full text
    Abstract Background Shrinking lung syndrome (SLS) is a rare manifestation of systemic lupus erythematosus (SLE) characterized by decreased lung volumes and diaphragmatic weakness in a dyspneic patient. Chest wall dysfunction secondary to pleuritis is the most commonly proposed cause. In this case report, we highlight a new potential mechanism of SLS in SLE, namely diaphragmatic weakness associated with myositis with CD20 positive B-cell aggregates. Case presentation A 51-year-old Caucasian woman was diagnosed with SLE and secondary Sjögren’s syndrome based on a history of pleuritis, constrictive pericarditis, polyarthritis, photosensitivity, alopecia, oral ulcers, xerophthalmia and xerostomia. Serologies were significant for positive antinuclear antibodies, anti-SSA, lupus anticoagulant and anti-cardiolopin. Blood work revealed a low C3 and C4, lymphopenia and thrombocytopenia. She was treated with with low-dose prednisone and remained in remission with oral hydroxychloroquine. Seven years later, she developed mild proximal muscle weakness and exertional dyspnea. Pulmonary function testing revealed a restrictive pattern with small lung volumes. Pulmonary imaging showed elevation of the right hemidiaphragm without evidence of interstitial lung disease. Diaphragmatic ultrasound was suggestive of profound diaphragmatic weakness and dysfunction. Based on these findings, a diagnosis of SLS was made. Her proximal muscle weakness was investigated, and creatine kinase (CK) levels were normal. Electromyography revealed fibrillation potentials in the biceps, iliopsoas, cervical and thoracic paraspinal muscles, and complex repetitive discharges in cervical paraspinal muscles. Biceps muscle biopsy revealed dense endomysial lymphocytic aggregates rich in CD20 positive B cells, perimysial fragmentation with plasma cell-rich perivascular infiltrates, diffuse sarcolemmal upregulation of class I MHC, perifascicular upregulation of class II MHC, and focal sarcolemmal deposition of C5b-9. Treatment with prednisone 15 mg/day and oral mycophenolate mofetil 2 g/day was initiated. Shortness of breath and proximal muscle weakness improved significantly. Conclusion Diaphragmatic weakness was the inaugural manifestation of myositis in this patient with SLE. The spectrum of myologic manifestations of myositis with prominent CD20 positive B-cell aggregates in SLE now includes normal CK levels and diaphragmatic involvement, in association with SLS
    corecore